首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

带标签的汽车点云KITTI

是一个公开的数据集,用于研究和开发自动驾驶和计算机视觉相关的技术。它包含了从汽车上采集的大量点云数据,并且每个点都附带了标签信息,用于指示点所属的对象类别,如汽车、行人、自行车等。

该数据集的主要特点和应用场景如下:

  1. 特点:
    • 点云数据:KITTI数据集提供了高质量的三维点云数据,可以用于进行目标检测、目标跟踪、场景分析等任务。
    • 标签信息:每个点都附带了标签信息,可以用于训练和评估模型的准确性。
    • 多传感器数据:KITTI数据集还提供了其他传感器数据,如相机图像、激光雷达数据等,可以用于多模态感知研究。
  • 应用场景:
    • 自动驾驶:KITTI数据集可以用于训练和评估自动驾驶系统的目标检测、障碍物跟踪等功能。
    • 计算机视觉:该数据集可以用于研究和开发计算机视觉相关的任务,如目标检测、场景分析、三维重建等。

腾讯云相关产品和产品介绍链接地址: 腾讯云提供了一系列与云计算和人工智能相关的产品和服务,以下是一些推荐的产品和链接地址:

  1. 云服务器(ECS):提供弹性计算能力,支持各类应用的部署和运行。产品介绍链接
  2. 云数据库MySQL版:提供高可用、可扩展的关系型数据库服务。产品介绍链接
  3. 人工智能平台(AI Lab):提供丰富的人工智能开发工具和算法模型,支持图像识别、语音识别、自然语言处理等任务。产品介绍链接
  4. 云存储(COS):提供安全、可靠的对象存储服务,适用于存储和管理各类数据。产品介绍链接
  5. 云安全中心:提供全面的云安全解决方案,包括DDoS防护、Web应用防火墙等。产品介绍链接

请注意,以上链接仅为示例,实际使用时请根据具体需求选择合适的腾讯云产品。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

SuMa++: 基于激光雷达的高效语义SLAM

可靠、准确的定位和建图是大多数自动驾驶系统的关键组件.除了关于环境的几何信息之外,语义对于实现智能导航行为也起着重要的作用.在大多数现实环境中,由于移动对象引起的动态变化,这一任务特别复杂,这可能会破坏定位.我们提出一种新的基于语义信息的激光雷达SLAM系统来更好地解决真实环境中的定位与建图问题.通过集成语义信息来促进建图过程,从而利用三维激光距离扫描.语义信息由全卷积神经网络有效提取,并呈现在激光测距数据的球面投影上.这种计算的语义分割导致整个扫描的点状标记,允许我们用标记的表面构建语义丰富的地图.这种语义图使我们能够可靠地过滤移动对象,但也通过语义约束改善投影扫描匹配.我们对极少数静态结构和大量移动车辆的KITTI数据集进行的具有挑战性的公路序列的实验评估表明,与纯几何的、最先进的方法相比,我们的语义SLAM方法具有优势.

01
  • 大盘点|三维视觉与自动驾驶数据集(40个)

    简介:KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的算法评测数据集。该数据集用于评测立体图像(stereo),光流(optical flow),视觉测距(visual odometry),3D物体检测(object detection)和3D跟踪(tracking)等计算机视觉技术在车载环境下的性能。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。整个数据集由389对立体图像和光流图,39.2 km视觉测距序列以及超过200k 3D标注物体的图像组成,以10Hz的频率采样及同步。对于3D物体检测,label细分为car, van, truck, pedestrian, pedestrian(sitting), cyclist, tram以及misc。

    04

    Improving 3D Object Detection with Channel-wise Transformer

    尽管近年来点云三维物体检测取得了快速进展,但缺乏灵活和高性能的建议细化仍然是现有最先进的两级检测器的一大障碍。 之前的3D建议精炼工作依赖于人为设计的组件,如关键点采样、集合抽象和多尺度特征融合,以产生强大的3D目标表示。 然而,这些方法捕获点之间丰富的上下文依赖关系的能力有限。 在本文中,我们利用高质量的区域提议网络和一个Channel-wise Transformer架构,以最少的手工设计构成了我们的两阶段3D目标检测框架(CT3D)。 建议的CT3D同时对每个建议中的点特征执行提议感知的嵌入和信道上下文聚合。 具体来说,CT3D利用建议的关键点进行空间情境建模,并在编码模块中学习注意力传播,将建议映射到点嵌入。 接下来,一个新的信通道译码模块通过通道重加权有效地合并多级上下文来丰富查询键交互,这有助于实现更准确的目标预测。 大量实验表明,我们的CT3D方法具有良好的性能和可扩展性。 值得一提的是,在KITTI测试3D检测基准上,CT3D在中型车类别中实现了81.77%的AP,优于最先进的3D检测器。

    02
    领券