要绘制Keras CNN模型的准确性和损失值,可以按照以下步骤进行:
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val))
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Train', 'Validation'], loc='upper right')
plt.show()
这样就可以绘制出CNN模型的准确性和损失值曲线。在绘制过程中,可以根据需要调整模型的结构和参数,以获得更好的性能和结果。
关于Keras、CNN模型、准确性和损失值的详细概念、分类、优势、应用场景以及腾讯云相关产品和产品介绍链接地址,可以参考腾讯云的官方文档和网站。
领取专属 10元无门槛券
手把手带您无忧上云