序列式(sequential) 函数式(functional) 子类化(subclassing) 编译模型:这是 Scikit-Learn 里面没有的,显性定义出损失函数(loss)、优化方法(optimizer...损失函数 在 Keras 里将层连成模型确定网络架构后,你还需要选择以下两个参数,选择损失函数和设定优化器。 在训练过程中需要将最小化损失函数,这它是衡量当前任务是否已成功完成的标准。...发现 loss 逐渐减少,acc 逐渐提高,这么个简单的单层全连接神经网络在 Fashion_MNIST 上精度做到 92.82% 也可以了。...在 Epoch = 8 时,训练精度达到 90.17%,停止训练。 1.6 预测模型 Keras 预测模型和 Scikit-Learn 里一样,都用是 model.predict()。...但是验证精度适中没有超过 90%,模型从头训练到完。 难道是我们的单层全连接模型太简单?
它将我们定义的简单层序列转换为一系列高效的矩阵转换,其格式旨在根据 Keras 的配置方式在 GPU 或 CPU 上执行。 将编译视为网络的预计算步骤。定义模型后始终需要它。...最后,除了损失函数之外,还可以指定在拟合模型时要收集的指标。通常,要收集的最有用的附加指标是分类问题的准确性。要收集的指标按数组中的名称指定。...训练网络需要指定训练数据,包括输入模式矩阵 X 和匹配输出模式数组 y。 网络采用反向传播算法进行训练,根据编译模型时指定的优化算法和损失函数进行优化。...这包括在编译模型时指定的损失和任何其他指标,每一轮训练都记录下来。 训练网络可能需要很长时间,从数秒到数小时到数天,具体取决于网络的大小和训练数据的大小。...例如,对于使用精度指标编译的模型,我们可以在新数据集上对其进行如下评估: loss, accuracy = model.evaluate(X, y) 与训练网络一样,提供了详细的输出,以给出模型评估的进度
知识蒸馏的高层机制 所以,这是一个高层次的方法: 训练一个在数据集上表现良好神经网络。这个网络就是“教师”模型。 使用教师模型在相同的数据集上训练一个学生模型。...在相同的数据集上训练一个较小的学生模型,但是使用来自教师模型(softmax输出)的预测作为ground-truth标签。这些softmax输出称为软标签。稍后会有更详细的介绍。...训练学生模型 用这个损失函数训练我们的浅层学生模型,我们得到~74%的验证精度。我们看到,在epochs 8之后,损失开始增加。这表明,加强正则化可能会有所帮助。...温度(τ)的影响 在这个实验中,我们研究温度对学生模型的影响。在这个设置中,我使用了相同的浅层CNN。 ? 从上面的结果可以看出,当τ为1时,训练损失和训练精度均优于其它方法。...我们在微调步骤中没有看到任何显著的改进。我想再次强调,我没有进行严格的超参数调优实验。基于我从EfficientNet B0得到的边际改进,我决定在以后的某个时间点进行进一步的实验。
模型在训练数据上的表现很好,并不意味着它在前所未见的数据上也会表现得很好,而且你真正关心的是模型在新数据上的性能(因为你已经知道了训练数据对应的标签,显然不再需要模型来进行预测)。...下面的步骤是用 rmsprop 优化器和 binary_crossentropy 损失函数来配置模型。注意,我们还在训练过程中监控精度。...在下面两个代码清单中, 我们将使用 Matplotlib 在同一张图上绘制训练损失和验证损失,以及训练精度和验证精度)。...但验证损失和验证精度并非如此:它们似 乎在第四轮达到最佳值。这就是我们之前警告过的一种情况:模型在训练数据上的表现越来越好, 但在前所未见的数据上不一定表现得越来越好。...我们从头开始训练一个新的网络,训练 4 轮,然后在测试数据上评估模型。
,若重复的样本即出现在训练集又出现在测试集,容易造成数据泄漏,应该确保训练集和测试集数据之间没有交集 3....过拟合判断:判断一个模型是否过拟合,让模型在训练数据上进行预测,若预测的精度很差,说明是模型没有训练成功,反之才是模型过拟合。...初始时选择较少的层和参数 依次增加层数或神经元数量,直至这种增加对验证损失的影响很小 添加权重正则化(简单模型比复杂模型更不容易过拟合):强制让模型权重只能取较小的值,从而限制模型的复杂度 L1 正则化...使用验证数据集的损失和精度曲线来帮助设置迭代次数 增大学习率。 5....(二分类、多分类、标量回归、向量回归、聚类、生成会强化学习) 做假设 选择衡量成功的指标(优化的目标) 平衡分类问题(每个类别的可能性相同)常用指标:精度和接收者操作特征曲线线下面积 类别不平衡问题:准确率和召回率
每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss function):网络如何衡量在训练数据上的性能,即网络如何朝着正确的方向前进 优化器(optimizer):基于训练数据和损失函数来更新网络的机制...因此,对于具有多个损失函数的网络,需要将所有损失函数取平均,变为一个标量值 一个 Keras 工作流程 定义训练数据: 输入张量和目标张量 定义层组成的网络(或模型),将输入映射到目标 配置学习过程...可见训练损失每轮都在降低,训练精度每轮都在提升,但验证损失和验证精度并非如此,这是因为我们遇到了过拟合的情况,可以采用多种方法防止过拟合,如增加数据样本,减少训练次数,减少网络参数等 使用训练好的网络对新数据进行预测...机器学习的目的当然是得到良好的泛化 训练开始时,优化和泛化是相关的: 训练数据上的损失越小,测试数据上的损失也越小。...这时的模型是欠拟合(underfit)的,即仍有改进的空间,网络还没有对训练数据中所有相关模式建模;但在训练数据上迭代一定次数之后,泛化不再提高,验证指标先是不变,然后开始变差,即模型开始过拟合。
在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...它将我们定义的简单层序列转换为高效的矩阵变换系列,其格式应在 GPU 或 CPU 上执行,具体取决于 Keras 的配置方式。 将编译视为网络的预计算步骤。 定义模型后始终需要编译。...具体地,用于训练网络的优化算法和用于评估由优化算法最小化的网络的损失函数。 例如,下面是编译定义模型并指定随机梯度下降(sgd)优化算法和均方误差(mse)损失函数的情况,用于回归类型问题。...最后,除了损失函数之外,您还可以指定在拟合模型时收集的度量标准。通常,要收集的最有用的附加度量标准是分类问题的准确性。要收集的度量标准由数组中的名称指定。...安装网络需要指定训练数据,输入模式矩阵 X 和匹配输出模式 y 的阵列。 使用反向传播算法训练网络,并根据编译模型时指定的优化算法和损失函数进行优化。
这种方法结合了SparseGPT一次性剪枝方法和在SlimPajama和The Stack数据集子集上对模型进行稀疏预训练。...例如,通过量化和稀疏化,模型在CPU上的速度提升了多达8.6倍。...以往的研究中,高稀疏度往往与准确率损失相关联,或者在处理复杂任务时难以维持高准确率。...广泛的任务适用性:由于高稀疏度下的准确率保持,这种结合方法使得模型可以广泛应用于各种NLP任务,包括那些对模型精度要求较高的场景。...3、稀疏度和提高CPU上的推理性能 高稀疏度意味着模型中有70%的权重被设为零,这大幅减少了模型的存储和运行时内存需求,使得模型更适合部署在资源受限的设备上,如移动设备和嵌入式系统。
test_on_batch:本函数在一个batch的样本上对模型进行评估,函数的返回与evaluate的情形相同 predict_on_batch:本函数在一个batch的样本上对模型进行测试,函数返回模型在一个...:损失函数,为预定义损失函数名或一个目标函数,参考损失函数 metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是metrics=[‘accuracy’]如果要在多输出模型中为不同的输出指定不同的指标...【Tips】如果你只是载入模型并利用其predict,可以不用进行compile。在Keras中,compile主要完成损失函数和优化器的一些配置,是为训练服务的。...#然后,我们插入一个额外的损失,使得即使在主损失很高的情况下,LSTM和Embedding层也可以平滑的训练。...也是一样,如果一个层只有一个节点, #或所有的节点都有相同的输入或输出shape, #那么input_shape和output_shape都是没有歧义的,并也只返回一个值。
上图就是训练集的25张图片展示 针对这个实验,我会使用tf.Keras,也就是一种高阶的API来构建TensorFlow的训练模型,如果你还没有安装TensorFlow,还没有设定好你的环境,可以看下这个说明...解释损失和准确度 损失是训练或验证集中的每个实例偏差的总和,它不是百分比。 因此,损失越低,模型越好,除非模型过拟合。 准确度是错误分类的百分比,并且在学习参数后计算,模型越精确越好。...让我们创建一个6层网络,增加3个隐藏层,保持相同的激活函数和形状,因此唯一变量就是神经网络的层数。...因此我们的测试损耗略微降低到33.7,测试精度略有提升至88%。 这是一个提升吗? 如果我们重新训练神经网络会怎样? 数量略有变化,测试损失徘徊在33-35左右,精度为87-89%。...尽管在训练集种损失已经逐渐降得很低了,但我们可以看到它并没有对测试数据产生这样的效果,因为两种模型的损失总体上都有所增加。 可视化预测 现在我们可以使用训练好的模型来对时尚类图像进行分类。
在本教程中,你将发现如何诊断 LSTM 模型在序列预测问题上的拟合度。完成教程之后,你将了解: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、较好拟合和过拟合的模型。...我们将从损失最小化的角度考虑在训练集和验证集上的建模技巧。 3. 欠拟合实例 欠拟合模型就是在训练集上表现良好而在测试集上性能较差的模型。...良好拟合实例 良好拟合的模型就是模型的性能在训练集和验证集上都比较好。 这可以通过训练损失和验证损失都下降并且稳定在同一个点进行诊断。 下面的小例子描述的就是一个良好拟合的 LSTM 模型。...过拟合实例 过拟合模型即在训练集上性能良好且在某一点后持续增长,而在验证集上的性能到达某一点然后开始下降的模型。 这可以通过线图来诊断,图中训练损失持续下降,验证损失下降到拐点开始上升。...每次运行的训练轨迹和验证轨迹都可以被绘制出来,以更鲁棒的方式记录模型随着时间的行为轨迹。 以下实例多次运行同样的实验,然后绘制每次运行的训练损失和验证损失轨迹。
神经网络入手[上] [x] 神经网络的核心部分 [x] Keras介绍 [ ] 使用Keras解决简单问题:分类和回归 神经网络剖析 神经网络的训练与下列对象相关: 网络层Layers,网络层结合形成神经网络模型...损失函数和优化算法:配置学习过程的关键 网络模型结构定义完成之后,仍然需要定义两件事: 损失函数:训练过程中最小化的函数值,一种评估网络模型的表现; 优化算法:决定基于损失函数如何更新权重系数;有常见的...只有在面对真正要解决的科学问题时,才能决定要使用的损失函数类型以及定义。 Keras 介绍 Keras是一个Python语言的深度学习框架,提供了快速搞笑的深度学习网络模型定义和训练方法。...Keras开发 Keras工作流大致如下: 定义训练数据:输入张量和目标张量; 定义网络层(或网络模型):由输入张量处理得到输出张量; 配置训练过程--选择损失函数、优化算法以及监测指标; 通过调用模型的...fit()方法在训练数据上迭代训练。
--MORE--> 训练集和测试集 这是一个典型的二分类问题。...隐藏层2 model.add(tf.keras.layers.Dense(1, activation="sigmoid")) 损失函数和优化器(修改) 这个问题属于二分类问题...20次 同时监控模型在10000个样本上精度和损失 训练模型 In 18: model.compile(optimizer="rmsprop", loss="binary_crossentropy...;训练的精度每轮都在提升(红色) 验证集的损失和精度似乎都在第4轮达到最优值 也就是:模型在训练集上表现良好,但是在验证集上表现的不好,这种现象就是过拟合 重新训练模型 通过上面的观察,第四轮的效果是比较好的...rmsprop 过拟合现象是常见的,因此一定要监控模型在训练数据集之外的数据集上的性能
第一个深度学习实战案例:电影评论分类 开始深度学习的内容,本文是《Python深度学习》一书中的实战案例:电影评论的二分类问题。 训练集和测试集 这是一个典型的二分类问题。...隐藏层2 model.add(tf.keras.layers.Dense(1, activation="sigmoid")) 损失函数和优化器(修改) 这个问题属于二分类问题...20次 同时监控模型在10000个样本上精度和损失 训练模型 In [18]: model.compile(optimizer="rmsprop", loss="binary_crossentropy...;训练的精度每轮都在提升(红色) 验证集的损失和精度似乎都在第4轮达到最优值 也就是:模型在训练集上表现良好,但是在验证集上表现的不好,这种现象就是过拟合 重新训练模型 通过上面的观察,第四轮的效果是比较好的...:rmsprop 过拟合现象是常见的,因此一定要监控模型在训练数据集之外的数据集上的性能
准备WISDM数据集,使其适合用于CNN网络模型的训练和测试。通过滑窗处理,可以将原始的长时间序列传感器数据转换为固定大小的短时间序列数据,这有助于训练卷积神经网络等模型进行人类活动识别。...2.模型实例化根据选择的模型,实例化一个模型对象,并将其移动到选定的设备上。3.创建数据加载器使用DataLoader创建训练和测试数据的加载器,允许在训练中以小批量方式加载数据。...5.混合精度训练设置实例化GradScaler对象,用于在训练中使用混合精度,可以提高训练效率和精度。6.训练循环对于每个训练轮次,执行以下步骤:设置模型为训练模式。...设置模型为评估模式。在测试集上进行预测,并计算模型的准确率、精确率、召回率和F1分数。打印每个轮次的训练损失、测试准确率和其他评估指标。...3.准确率和损失率的收敛曲线图准确率和损失率的收敛曲线图横坐标是训练轮次,纵坐标是模型的准确率以及损失率,这个图可以直观的看出你的模型在训练以及测试过程中的准确率和损失率走向和模型收敛以后的准确率的数值范围
监督学习除了回归和分类,还有其他变体: 序列生成 语法树预测 目标检测 图像分割 无监督学习 无监督学习是指在没有目标的情况下寻找输入数据的有趣变换,目的是在于数据可视化、数据压缩、数据去噪或者更好地理解数据中的相关性...评估模型的注意事项 数据代表性:随机打乱数据 时间箭头:如果想根据过去预测未来,即针对所谓的时间序列的数据,则不应该随机打乱数据,这样会造成时间泄露 数据冗余:确保训练集和验证集之间没有交集 数据预处理...欠拟合underfit:训练数据上的损失越小,测试数据上的数据损失也越小。 过拟合和欠拟合的产生 1、欠拟合问题,根本的原因是特征维度过少,导致拟合的函数无法满足训练集,误差较大。...,理想的模型是刚好在欠拟合和过拟合的边界上,在容量不足和容量过大的边界上。...为了弄清楚我们需要多大的模型,就必须开发一个过拟合的模型: 添加更多的层 让每一层变的更大 训练更多的轮次 在训练的过程中始终监控训练损失和验证损失,以及我们关心的指标。
如果在没有事先训练的情况下保存模型,则只能有效地保存模型的架构。...模型日志对于探索训练精度的特定变化以及了解损失函数的执行情况非常有用: 图 22:Jupyter 笔记本的部分,我们在其中加载早期模型并使用新数据进行训练 最后,让用我们训练有素的模型进行预测。...相反,我们使用单个变量(或一组变量)的先前观察值来预测同一变量(或一组变量)的未来观察结果。 Keras.fit()上的y参数包含与x参数相同的变量,但仅包含预测序列。...通过在整个序列(即训练和测试集)上滑动 76 周的窗口,并对每个窗口进行预测,我们可以做到这一点。...在bitcoin_lstm_v0模型的情况下,其损失函数稳定在大约 100 个周期。 我们的 LSTM 模型使用少量数据进行训练,因此增加周期数不会显着影响其表现。
随机初始化可以让网络通过学习,得到一个所学函数的很好的近似。 然而, 有时候用同样的数据训练同一个网络,你需要每次都得到完全相同的结果。例如在教学和产品上。...这个网络将采用均方差作为损失函数,用高效的 ADAM 算法来训练数据 这个网络需要约 1000 轮才能有效的解决这个问题,但我们只对它训练 100 轮。...每次运行代码时,可以看到相同的均方差值的列表(在不同的机器上可能会有一些微小变化,这取决于机器的精度),如下面的示例所示: 0.169326527063 2.75750621228e-05 0.0183287291562...来自复杂模型的随机性 由于模型的复杂性和训练的并行性,你可能会得到不可复现的结果。 这很可能是由后端库的效率造成的,或者是不能在内核中使用随机数序列。...我自己没有遇到过这个,但是在一些 GitHub 问题和 StackOverflowde 问题中看到了一些案例。 如果只是缩小成因的范围的话,你可以尝试降低模型的复杂度,看这样是否影响结果的再现。
领取专属 10元无门槛券
手把手带您无忧上云