首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CNN的准确性和损失没有变化吗?

CNN的准确性和损失是在训练过程中不断变化的。CNN(卷积神经网络)是一种深度学习模型,用于图像识别、计算机视觉等任务。在训练过程中,CNN通过反向传播算法不断调整模型的权重和偏置,以最小化损失函数。这个过程被称为优化过程,目标是使模型的预测结果与真实标签尽可能接近。

准确性是指模型在给定数据集上的预测准确率。在训练过程中,随着模型不断学习和调整,准确性会逐渐提高。然而,由于数据集的复杂性和模型的复杂性,准确性可能会在训练过程中出现波动。这是因为模型可能会在某些数据样本上过拟合,导致在其他数据样本上的准确性下降。为了解决这个问题,可以采用一些正则化技术,如dropout和正则化项,来减少过拟合的风险。

损失是指模型在训练过程中的误差。损失函数通常使用交叉熵或均方误差等来衡量模型的预测结果与真实标签之间的差异。在训练过程中,通过优化算法不断调整模型的参数,以最小化损失函数。随着训练的进行,损失会逐渐减小,表示模型的预测结果与真实标签之间的差异越来越小。

总结起来,CNN的准确性和损失在训练过程中是会变化的。随着模型的学习和调整,准确性会逐渐提高,而损失会逐渐减小。然而,由于数据集和模型的复杂性,准确性和损失可能会在训练过程中出现波动。为了提高准确性和降低损失,可以采用正则化技术和优化算法来优化模型。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • [Intensive Reading]目标检测(object detection)系列(六) SSD:兼顾效率和准确性

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    02

    R-FCN: Object Detection via Region-based Fully Convolutional Networks

    我们提出了基于区域的全卷积网络,用于精确和有效的目标检测。与之前的基于区域的检测器(如Fast/Faster R-CNN)相比,我们的基于区域的检测器是全卷积的,几乎所有计算都在整个图像上共享。为了实现这一目标,我们提出了位置敏感的分数映射来解决图像分类中的平移不变性与目标检测中的平移方差之间的矛盾。因此,我们的方法可以很自然地采用完全卷积的图像分类器骨干网络,如最新的残差网络(ResNets),用于目标检测。我们使用101层ResNet在PASCAL VOC数据集上显示了很有竞争的结果(例如,在2007年的集上显示了83.6%的mAP)。同时,我们的结果在测试时的速度为每张图像170ms,比Faster R-CNN对应图像快2.5-20倍。

    02

    CVPR 2020 | 一种频域深度学习

    深度神经网络在计算机视觉任务中取得了显著的成功。对于输入图片,现有的神经网络主要在空间域中操作,具有固定的输入尺寸。然而在实际应用中,图像通常很大,必须被降采样到神经网络的预定输入尺寸。尽管降采样操作可以减少计算量和所需的通信带宽,但它会无意识地移除冗余和非冗余信息,导致准确性下降。受数字信号处理理论的启发,我们从频率的角度分析了频谱偏差,并提出了一种可学习的频率选择方法,可以在不损失准确性的情况下移除次相关的频率分量。在下游任务中,我们的模型采用与经典神经网络(如ResNet-50、MobileNetV2和Mask R-CNN)相同的结构,但接受频域信息作为输入。实验结果表明,与传统的空间降采样方法相比,基于静态通道选择的频域学习方法可以实现更高的准确性,同时能够减少输入数据的大小。具体而言,在相同的输入尺寸下,所提出的方法在ResNet-50和MobileNetV2上分别实现了1.60%和0.63%的top-1准确率提升。当输入尺寸减半时,所提出的方法仍然将ResNet-50的top-1准确率提高了1.42%。此外,我们观察到在COCO数据集上的分割任务中,Mask R-CNN的平均精度提高了0.8%。

    04

    时序预测的深度学习算法介绍

    深度学习方法是一种利用神经网络模型进行高级模式识别和自动特征提取的机器学习方法,近年来在时序预测领域取得了很好的成果。常用的深度学习模型包括循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)、卷积神经网络(CNN)、注意力机制(Attention)和混合模型(Mix )等,与机器学习需要经过复杂的特征工程相比,这些模型通常只需要经数据预处理、网络结构设计和超参数调整等,即可端到端输出时序预测结果。深度学习算法能够自动学习时间序列数据中的模式和趋势,神经网络涉及隐藏层数、神经元数、学习率和激活函数等重要参数,对于复杂的非线性模式,深度学习模型有很好的表达能力。在应用深度学习方法进行时序预测时,需要考虑数据的平稳性和周期性,选择合适的模型和参数,进行训练和测试,并进行模型的调优和验证。来源:轮回路上打碟的小年轻(侵删)

    03

    [Intensive Reading]目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    02

    [Intensive Reading]目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    01

    又改YOLO | 项目如何改进YOLOv5?这篇告诉你如何修改让检测更快、更稳!!!

    交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务,尤其是多尺度目标检测和检测的实时性问题。在交通标志检测过程中,目标的规模变化很大,会对检测精度产生一定的影响。特征金字塔是解决这一问题的常用方法,但它可能会破坏交通标志在不同尺度上的特征一致性。而且,在实际应用中,普通方法难以在保证实时检测的同时提高多尺度交通标志的检测精度。 本文提出了一种改进的特征金字塔模型AF-FPN,该模型利用自适应注意模块(adaptive attention module, AAM)和特征增强模块(feature enhancement module, FEM)来减少特征图生成过程中的信息丢失,进而提高特征金字塔的表示能力。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了验证。

    02

    [Intensive Reading]目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    02
    领券