首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pandas数据帧中查找非零元素的行和列

在pandas数据帧中查找非零元素的行和列可以通过以下步骤实现:

  1. 导入pandas库并创建一个数据帧:
代码语言:txt
复制
import pandas as pd

data = {'A': [1, 0, 3, 0],
        'B': [0, 5, 0, 7],
        'C': [0, 0, 9, 10]}
df = pd.DataFrame(data)
  1. 使用df != 0条件来创建一个布尔型数据帧,其中非零元素为True,零元素为False:
代码语言:txt
复制
non_zero_df = df != 0
  1. 使用non_zero_df.any(axis=1)来查找包含非零元素的行,返回一个布尔型Series:
代码语言:txt
复制
non_zero_rows = non_zero_df.any(axis=1)
  1. 使用non_zero_df.any(axis=0)来查找包含非零元素的列,返回一个布尔型Series:
代码语言:txt
复制
non_zero_columns = non_zero_df.any(axis=0)
  1. 使用布尔型Series来筛选出包含非零元素的行和列:
代码语言:txt
复制
result = df.loc[non_zero_rows, non_zero_columns]

这样,result数据帧将只包含原始数据帧中非零元素的行和列。

对于pandas数据帧中查找非零元素的行和列,腾讯云提供了云原生数据库TDSQL-C和云数据库CynosDB等产品,可以用于存储和处理大规模数据。您可以通过以下链接了解更多关于腾讯云的相关产品信息:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

何在 Pandas 创建一个空数据并向其附加行

Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据数据以表格形式在行对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据。大多数情况下,数据是从其他数据源(csv,excel,SQL等)导入到pandas数据。...在本教程,我们将学习如何创建一个空数据,以及如何在 Pandas 向其追加行。... Pandas 库创建一个空数据以及如何向其追加行。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据进行操作的人来说非常有帮助。

27230

pandaslociloc_pandas获取指定数据

大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:ilocloc。...读取第二值 (2)读取第二值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过名称或标签来索引 iloc:通过索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...columns进行切片操作 # 读取第2、3,第3、4 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里区间是左闭右开,data.iloc[1:...3, 2:4]第4、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

8.8K21
  • 用过Excel,就会获取pandas数据框架值、

    在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为45。 图3 使用pandas获取 有几种方法可以在pandas获取。...想想如何在Excel引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][索引]。...图9 要获得第2第4,以及其中用户姓名、性别年龄,可以将列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三数据框架。...接着,.loc[[1,3]]返回该数据框架第1第4。 .loc[]方法 正如前面所述,.loc语法是df.loc[],需要提醒(索引)可能值是什么?

    19.1K60

    Pandas 秘籍:1~5

    在视觉上,Pandas 数据输出显示(在 Jupyter 笔记本)似乎只不过是由组成普通数据表。 隐藏在表面下方是三个组成部分-您必须具备索引,数据(也称为值)。...考虑顺序时,查找和解释信息要容易得多。 没有标准规则集来规定应如何在数据集中组织。 但是,优良作法是制定一组您始终遵循准则以简化分析。 如果您与一组共享大量数据分析师合作,则尤其如此。...shape属性返回两个元素元组。size属性返回数据元素总数,它只是乘积。ndim属性返回维数,对于所有数据,维数均为 2。...cumprod 四、选择数据子集 在本章,我们将介绍以下主题: 选择序列数据 选择数据 同时选择数据 同时通过整数标签选择数据 加速标量选择 以延迟方式对切片 按词典顺序切片...同时选择数据 直接使用索引运算符是从数据中选择一或多正确方法。 但是,它不允许您同时选择

    37.5K10

    数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    如果丢失数据是由数据NaN表示,那么应该使用np.NaN将其转换为NaN,如下所示。...这将返回一个表,其中包含有关数据汇总统计信息,例如平均值、最大值最小值。在表顶部是一个名为counts。在下面的示例,我们可以看到数据每个特性都有不同计数。...条形图 条形图提供了一个简单绘图,其中每个条形图表示数据。条形图高度表示该完整程度,即存在多少个空值。...其他WELL、DEPTH_MDGR)是完整,并且具有最大值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好工具。它为每一提供颜色填充。...当一中都有一个值时,该行将位于最右边位置。当该行缺少值开始增加时,该行将向左移动。 热图 热图用于确定不同之间度相关性。换言之,它可以用来标识每一之间是否存在空值关系。

    4.7K30

    Pandas 学习手册中文第二版:1~5

    正如我们将首先使用Series然后使用DataFrame所看到那样,pandas 将结构化数据组织为一个或多个数据,每个都是一个特定数据类型,然后是个或多个数据序列。...以下显示Missoula中大于82度值: 然后可以将表达式结果应用于数据序列)[]运算符,这仅导致返回求值为True表达式: 该技术在 pandas 术语称为布尔选择,它将构成基于特定值选择基础...这种自动对齐方式使数据比电子表格或数据库更有能力进行探索性数据分析。 结合在行列上同时切片数据功能,这种与数据数据进行交互浏览功能对于查找所需信息非常有效。...创建数据期间对齐 选择数据特定 将切片应用于数据 通过位置标签选择数据 标量值查找 应用于数据布尔选择 配置 Pandas 我们使用以下导入配置语句开始本章示例...访问数据数据 数据组成,并具有从特定中选择数据结构。 这些选择使用与Series相同运算符,包括[],.loc[].iloc[]。

    8.3K10

    python数据分析——数据选择运算

    数据选择运算 前言 在数据分析数据选择运算是非常重要步骤。数据选择运算是数据分析基础工作,正确高效选择运算方法对于数据分析结果准确性速度至关重要。...PythonPandas库为我们提供了强大数据选择工具。通过DataFrame结构化数据存储方式,我们可以轻松地按照进行数据选择。...此外,Pandas库也提供了丰富数据处理运算功能,如数据合并、数据转换、数据重塑等,使得数据运算更加灵活多样。 除了基本数值运算外,数据分析还经常涉及到统计运算机器学习算法应用。...,选择第一第二数据元素并输出。...PythonPandas库为数据合并操作提供了多种合并方法,merge()、join()concat()等方法。

    17310

    Pandas 秘籍:6~11

    如果笛卡尔积是 Pandas 唯一选择,那么将数据加在一起这样简单操作将使返回元素数量激增。 在此秘籍,每个序列具有不同数量元素。...更多 在此秘籍,我们为每个组返回一作为序列。 通过返回数据,可以为每个组返回任意数量。...除了查找算术和加权均值之外,我们还查找两个 SAT 几何和谐波均值,然后将结果作为数据返回,其中数据是均值类型名称,是 SAT 类型。...在此函数内部,删除了数据索引并用RangeIndex代替,以便我们轻松找到条纹第一最后一。 反转ON_TIME,然后使用相同逻辑查找延迟飞行条纹。...原始第一数据成为结果序列前三个值。 在步骤 2 重置索引后,pandas 将我们数据默认设置为level_0,level_10。

    34K10

    NumPy Pandas 数据分析实用指南:1~6 全

    因此,所得数组第一第一元素为[0, 0]。 在第一第二,我们有原始数组元素[0, 2]。 然后,在第二第一,我们具有原始数组第三第一元素。...然后,我们有了原始数组第三第三元素,该元素对应于Joey。 让我们来看一下更复杂数组。...必须牢记是,涉及数据算法首先应用于数据,然后再应用于数据。 因此,数据将与单个标量,具有与该同名索引序列元素或其他涉及数据匹配。...例如,我们可以尝试用缺失数据平均值填充一缺失数据。 填充缺失信息 我们可以使用fillna方法来替换序列或数据丢失信息。...我们将看看如何在 Pandas 实现这一目标。 我们还将介绍 Pandas 分层索引绘图。 按索引排序 在谈论排序时,我们需要考虑我们到底要排序什么。 有,它们索引以及它们包含数据

    5.4K30

    针对SAS用户:Python数据分析库pandas

    可以认为Series是一个索引、一维数组、类似一值。可以认为DataFrames是包含二维数组索引。好比Excel单元格按列位置寻址。...下面的SAS例子,DO循环用于迭代数组元素来定位目标元素。 SAS数组主要用于迭代处理变量。SAS/IML更接近模拟NumPy数组。但SAS/IML 在这些示例范围之外。 ?...DataFrame.head()方法默认显示前5。.tail()方法默认显示最后5计数值可以是任意整数值,: ? SAS使用FIRSTOBSOBS选项按照程序来确定输入观察数。...Pandas使用两种设计来表示缺失数据,NaN(数值)Python None对象。 下面的单元格使用Python None对象代表数组缺失值。相应地,Python推断出数组数据类型是对象。...显然,这会丢弃大量“好”数据。thresh参数允许您指定要为保留最小空值。在这种情况下,"d"被删除,因为它只包含3个空值。 ? ? 可以插入或替换缺失值,而不是删除。.

    12.1K20

    精通 Pandas 探索性分析:1~4 全

    /img/80f5fbde-9419-48fe-8538-2d04b5aad7a9.png)] 从 Pandas 数据中选择多个 在本节,我们将学习更多有关从读取到 Pandas 数据集中选择多个方法信息.../img/3cee634e-99f8-4ec7-8fce-0ebb53bcb71e.png)] 您在前面的屏幕快照中所见,我们按StateMetro过滤了,并使用过滤器值创建了一个新数据...在本节,我们探讨了如何使用各种 Pandas 技术来处理数据集中缺失数据。 我们学习了如何找出丢失数据量以及从哪几列查找。 我们看到了如何删除所有或很多记录丢失数据。...重命名 Pandas 数据 在本节,我们将学习在 Pandas 重命名列标签各种方法。 我们将学习如何在读取数据读取数据时重命名列,并且还将看到如何重命名所有或特定。...我们看到了如何处理 Pandas 缺失值。 我们探索了 Pandas 数据索引,以及重命名删除 Pandas 数据。 我们学习了如何处理转换日期时间数据

    28.2K10

    使用R或者Python编程语言完成Excel基础操作

    以下是一些建议,可以帮助你从开始学习Excel: 理解基本概念:首先了解Excel基本组成部分,工作簿、工作表、单元格、等。...掌握基本操作:学习如何插入、删除/,重命名工作表,以及基本数据输入。 使用公式:学习使用Excel基本公式,SUM、AVERAGE、VLOOKUP等,并理解相对引用绝对引用概念。...修改数据 直接修改:选中单元格,直接输入新数据。 使用查找替换:按Ctrl+F或Ctrl+H,进行查找替换操作。 4. 查询数据 使用公式:在单元格输入公式进行计算。...查找特定数据:按Ctrl+F打开查找窗口,输入要查找内容。 5. 排序 简单排序:选中数据区域,点击“数据”选项卡“升序”或“降序”按钮。...自定义视图 创建视图:保存当前视图设置,高、宽、排序状态等。 这些高级功能可以帮助用户进行更深入数据分析,实现更复杂数据处理需求,以及提高工作效率。

    21710

    Pandas速查卡-Python数据科学

    刚开始学习pandas时要记住所有常用函数方法显然是有困难,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据前n df.tail(n) 数据后n df.shape() 行数数...df.iloc[0,:] 第一 df.iloc[0,0] 第一第一个元素 数据清洗 df.columns = ['a','b','c'] 重命名列 pd.isnull() 检查空值,返回逻辑数组...df.describe() 数值汇总统计信息 df.mean() 返回所有平均值 df.corr() 查找数据之间相关性 df.count() 计算每个数据空值数量 df.max...() 查找每个最大值 df.min() 查找最小值 df.median() 查找中值 df.std() 查找每个标准差 点击“阅读原文”下载此速查卡打印版本 END.

    9.2K80

    数据科学 IPython 笔记本 7.6 Pandas 数据操作

    Pandas 包含一些有用调整,但是:对于一元操作,取负三角函数,这些ufunc将保留输出索引标签,对于二元操作,加法乘法,将对象传递给ufunc时,Pandas 将自动对齐索引。...', 'Texas'], dtype='object') 任何没有条目的项目都标为NaN(数字),这就是 Pandas 标记缺失数据方式(请在“处理缺失数据参阅缺失数据进一步讨论)。...2 9.0 3 5.0 dtype: float64 ''' 数据索引对齐 在DataFrames上执行操作时,索引都会发生类似的对齐: A = pd.DataFrame(rng.randint...(参见“数据计算:广播”),二维数组与其中一之间减法是逐行应用。...,Pandas 数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组异构/或未对齐数据时,可能出现愚蠢错误。

    2.8K10

    20个能够有效提高 Pandas数据分析效率常用函数,附带解释例子

    Pandas是一个受众广泛python数据分析库。它提供了许多函数方法来加快数据分析过程。pandas之所以如此普遍,是因为它功能强大、灵活简单。...Loc iloc Loc iloc 函数用于选择或者。 loc:通过标签选择 iloc:通过位置选择 loc用于按标签选择数据标签是列名。...如果axis参数设置为1,nunique将返回每行唯一值数目。 13. Lookup 'lookup'可以用于根据标签在dataframe查找指定值。假设我们有以下数据: ?...Infer_objects Pandas支持广泛数据类型,其中之一就是object。object包含文本或混合(数字数字)值。但是,如果有其他选项可用,则不建议使用对象数据类型。...df1df2是基于column_a共同值进行合并,merge函数how参数允许以不同方式组合dataframe,:“inner”、“outer”、“left”、“right”等。

    5.7K30

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    1.对表格类型数据读取输出速度非常快。(个人对比excelpandas,的确pandas不会死机....)在他演示,我们可以看到读取489597,6数据只要0.9s。...数据 2 一般二维标签,大小可变表格结构,具有潜在均匀类型。 面板 3 一般3D标签,大小可变数组。 ---- Series 系列是具有均匀数据一维数组结构。...index:索引值必须是唯一,与数据长度相同。...head() 返回前n。 tail() 返回最后n。 ---- DataFrame基本方法 属性或方法 描述 Ť 转置。 axes 以轴标签轴标签作为唯一成员返回列表。...shape 返回表示DataFrame维度元组。 size NDFrame元素数目。 values NDFrameNumpy表示。 head() 返回前n。 tail() 返回最后n

    6.7K30

    媲美Pandas?PythonDatatable包怎么用?

    通过本文介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大时候你可以发现它可能比 Pandas 更加强大。...整个文件共包含226万145数据数据量规模非常适合演示 datatable 包功能。...Frame 对象,datatable 基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 概念是相同:即数据二维数组排列展示。...▌选择/子集 下面的代码能够从整个数据集中筛选出所有及 funded_amnt : datatable_df[:,'funded_amnt'] ?...下面来看看如何在 datatable Pandas ,通过对 grade 分组来得到 funded_amout 均值: datatable 分组 %%time for i in range(100

    7.2K10

    媲美Pandas?PythonDatatable包怎么用?

    通过本文介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大时候你可以发现它可能比 Pandas 更加强大。...整个文件共包含226万145数据数据量规模非常适合演示 datatable 包功能。...对象,datatable 基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 概念是相同:即数据二维数组排列展示。...▌选择/子集 下面的代码能够从整个数据集中筛选出所有及 funded_amnt : datatable_df[:,'funded_amnt'] ?...下面来看看如何在 datatable Pandas ,通过对 grade 分组来得到 funded_amout 均值: datatable 分组 %%timefor i in range(100

    6.7K30

    精通 Pandas:1~5

    可以将其视为序列结构字典,在该结构,对均进行索引,对于,则表示为“索引”,对于,则表示为“”。 它大小可变:可以插入删除。 序列/数据每个轴都有索引,无论是否默认。...需要索引才能快速查找以及正确对齐连接 Pandas 数据。 轴也可以命名,例如以月形式表示数组 Jan Feb Mar …Dec。...与 Numpy ndarrays相比,pandas 数据结构更易于使用且更加用户友好,因为在数据和面板情况下,它们提供索引索引。数据对象是 Pandas 中最流行使用最广泛对象。...由于并非所有都存在于两个数据,因此对于不属于交集数据每一,来自另一个数据均为NaN。...其余 ID 可被视为变量,并可进行透视设置并成为名称-值两方案一部分。 ID 唯一标识数据

    19.1K10

    图解pandas模块21个常用操作

    5、序列聚合统计 Series有很多聚会函数,可以方便统计最大值、求和、平均值等 ? 6、DataFrame(数据) DataFrame是带有标签二维数据结构,类型可能不同。...9、选择 在刚学Pandas时,选择选择非常容易混淆,在这里进行一下整理常用选择。 ? 10、选择 整理多种选择方法,总有一种适合你。 ? ? ?...13、聚合 可以按进行聚合,也可以用pandas内置describe对数据进行操作简单而又全面的数据聚合分析。 ? ?...18、查找替换 pandas提供简单查找替换功能,如果要复杂查找替换,可以使用map(), apply()applymap() ?...19、数据合并 两个DataFrame合并,pandas会自动按照索引对齐,可以指定两个DataFrame对齐方式,内连接外连接等,也可以指定对齐索引。 ?

    8.9K22
    领券