首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的loc和iloc_pandas获取指定数据的行和列

大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:

10K21

用过Excel,就会获取pandas数据框架中的值、行和列

在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。

    28030

    python数据分析——数据的选择和运算

    Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...例如,使用.loc和.iloc可以根据行标签和行号来选取数据,而.query方法则允许我们根据条件表达式来筛选数据。 在数据选择的基础上,数据运算则是进一步挖掘数据内在规律的重要手段。...主要有以下四种方式: 索引方式 使用场景 基础索引 获取单个元素 切片 获取子数组 布尔索引 根据比较操作,获取数组元素 数组索引 传递索引数组,更加快速,灵活的获取子数据集 数组的索引主要用来获得数组中的数据...而在选择行和列的时候可以传入列表,或者使用冒号来进行切片索引。...,选择第一行第二列的数据元素并输出。

    19310

    Pandas 秘籍:1~5

    列和索引用于特定目的,即为数据帧的列和行提供标签。 这些标签允许直接轻松地访问不同的数据子集。 当多个序列或数据帧组合在一起时,索引将在进行任何计算之前首先对齐。 列和索引统称为轴。...或者,您可以使用dtypes属性来获取每一列的确切数据类型。select_dtypes方法在其include参数中获取数据类型的列表,并返回仅包含那些给定数据类型的列的数据帧。...shape属性返回行和列数的两个元素的元组。size属性返回数据帧中元素的总数,它只是行和列数的乘积。ndim属性返回维数,对于所有数据帧,维数均为 2。...这在第 3 步中得到确认,在第 3 步中,结果(没有head方法)将返回新的数据列,并且可以根据需要轻松地将其作为列附加到数据帧中。axis等于1/index的其他步骤将返回新的数据行。...逗号左侧的选择始终根据行索引选择行。 逗号右边的选择始终根据列索引选择列。 不必同时选择行和列。 步骤 2 显示了如何选择所有行和列的子集。 冒号表示一个切片对象,该对象仅返回该维度的所有值。

    37.6K10

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    我们将一个对象传递给包含将添加到现有对象中的数据的方法。 如果我们正在使用数据帧,则可以附加新行或新列。 我们可以使用concat函数添加新列,并使用dict,序列或数据帧进行连接。...我有一个列表,在此列表中,我有两个数据帧。 我有df,并且我有新的数据帧包含要添加的列。...在本节中,我们将看到如何获取和处理我们存储在 Pandas 序列或数据帧中的数据。 自然,这是一个重要的话题。 这些对象否则将毫无用处。 您不应该惊讶于如何对数据帧进行子集化有很多变体。...接下来,我们看到loc和iloc的行为。loc根据它们的索引选择行和列,但是iloc像选择列表一样选择它们。...如果有序列或数据帧的元素找不到匹配项,则会生成新列,对应于不匹配的元素或列,并填充 Nan。 数据帧和向量化 向量化可以应用于数据帧。

    5.4K30

    Pandas 学习手册中文第二版:1~5

    这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...选择数据帧的列 使用[]运算符选择DataFrame特定列中的数据。 这与Series不同,在Series中,[]指定了行。 可以将[]操作符传递给单个对象或代表要检索的列的对象列表。...此外,我们看到了如何替换特定行和列中的数据。 在下一章中,我们将更详细地研究索引的使用,以便能够有效地从 pandas 对象内检索数据。

    8.3K10

    直观地解释和可视化每个复杂的DataFrame操作

    操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...考虑一个二维矩阵,其一维为“ B ”和“ C ”(列名),另一维为“ a”,“ b ”和“ c ”(行索引)。 我们选择一个ID,一个维度和一个包含值的列/列。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。

    13.3K20

    Pandas 秘籍:6~11

    但是,像往常一样,每当一个数据帧从另一个数据帧或序列添加一个新列时,索引都将在创建新列之前首先对齐。 准备 此秘籍使用employee数据集添加一个新列,其中包含该员工部门的最高薪水。...它最多包含五个参数,其中两个参数对于理解如何正确重塑数据至关重要: id_vars是您要保留为列且不重塑形状的列名列表 value_vars是您想要重整为单个列的列名列表 id_vars或标识变量保留在同一列中...merge方法提供了类似 SQL 的功能,可以将两个数据帧结合在一起。 将新行追加到数据帧 在执行数据分析时,创建新列比创建新行更为常见。...其余步骤使用append方法,这是一种仅将新行追加到数据帧的简单方法。 大多数数据帧方法都允许通过axis参数进行行和列操作。append是一个例外,它只能将行追加到数据帧。...设置方法修改特定的属性或整个对象组。 许多 matplotlib 归结为锁存到特定的绘图元素上,然后通过获取器和设置器方法进行检查和修改。 把 matplotlib 层次结构类比为家可能是有用的。

    34K10

    精通 Pandas:1~5

    创建视图不会导致数组的新副本,而是可以按特定顺序排列其中包含的数据,或者仅显示某些数据行。 因此,如果将数据替换为基础数组的数据,则无论何时通过索引访问数据,这都会反映在视图中。...使用ndarrays/列表字典 在这里,我们从列表的字典中创建一个数据帧结构。 键将成为数据帧结构中的列标签,列表中的数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...与 Numpy ndarrays相比,pandas 数据结构更易于使用且更加用户友好,因为在数据帧和面板的情况下,它们提供行索引和列索引。数据帧对象是 Pandas 中最流行和使用最广泛的对象。...变量并采用结果列表的第三个元素来获取年份。...后两列的值为NaN,因为第一个数据帧仅包含前三列。

    19.2K10

    精通 Pandas 探索性分析:1~4 全

    二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...此series对象将仅包含来自此特定列的值。 我们如何确定这是series对象?...Pandas 数据帧是带有标签行和列的多维表格数据结构。 序列是包含单列值的数据结构。 Pandas 的数据帧可以视为一个或多个序列对象的容器。...以下代码行显示我们正在选择County列的值为Queens的行: zillow.loc[zillow.County=="Queens"] 现在,让我们根据不同列的值选择特定列的所有行。...重命名 Pandas 数据帧中的列 在本节中,我们将学习在 Pandas 中重命名列标签的各种方法。 我们将学习如何在读取数据后和读取数据时重命名列,并且还将看到如何重命名所有列或特定列。

    28.2K10

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...groupby() 函数允许我们根据一个或多个索引元素对记录进行分组。让我们考虑一个数据集,其中包含学生分数的数据集,如以下示例所示。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的数据帧显示每个学生的平均分数。...语法 list_name.append(element) 在这里,append() 函数是一个列表方法,用于将元素添加到list_name的末尾。它通过将指定的元素添加为新项来修改原始列表。

    23230

    删除重复值,不只Excel,Python pandas更行

    import pandas as pd df = pd.read_excel(‘D:\用户-1.xlsx’) 图2 快速观察上述小表格: 第1行和第5行包含完全相同的信息。...第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...此方法包含以下参数: subset:引用列标题,如果只考虑特定列以查找重复值,则使用此方法,默认为所有列。 keep:保留哪些重复值。’...如果我们指定inplace=True,那么原始的df将替换为新的数据框架,并删除重复项。 图5 在列表或数据表列中查找唯一值 有时,我们希望在数据框架列的列表中查找唯一值。...当我们对pandas Series对象调用.unique()时,它将返回该列中唯一元素的列表。

    6.1K30

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。...Isin 在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。...对于行标签,如果我们不分配任何特定的索引,pandas默认创建整数索引。因此,行标签是从0开始向上的整数。与iloc一起使用的行位置也是从0开始的整数。...Melt Melt用于将维数较大的 dataframe转换为维数较少的 dataframe。一些dataframe列中包含连续的度量或变量。在某些情况下,将这些列表示为行可能更适合我们的任务。...Select_dtypes Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。

    5.7K30

    多表格文件单元格平均值计算实例解析

    本教程将介绍如何使用Python编程语言,通过多个表格文件,计算特定单元格数据的平均值。准备工作在开始之前,请确保您已经安装了Python和必要的库,例如pandas。...我们以CSV文件为例,每个文件包含不同的行和列,其中每个单元格包含数值数据。文件命名和数据结构示例文件命名遵循以下规则:Data_XXX.csv,其中XXX表示文件编号。...获取文件路径列表: 使用列表推导式获取匹配条件的文件路径列表。创建空数据框: 使用pandas创建一个空数据框,用于存储所有文件的数据。...glob: 用于根据特定模式匹配文件路径。pandas: 用于数据处理和分析,主要使用DataFrame来存储和操作数据。...脚本使用了os、pandas和glob等库,通过循环处理每个文件,提取关键列数据,最终计算并打印出特定单元格数据的平均值。

    19000

    精心整理 | 非常全面的Pandas入门教程

    作者:石头 | 来源:机器学习那些事 pandas是基于NumPy的一种数据分析工具,在机器学习任务中,我们首先需要对数据进行清洗和编辑等工作,pandas库大大简化了我们的工作量,熟练并掌握pandas...如何安装pandas 2. 如何导入pandas库和查询相应的版本信息 3. pandas数据类型 4. series教程 5. dataframe教程 6. 小结 1....__version__) # 打印pandas版本信息 #> 0.23.4 3. pandas数据类型 pandas包含两种数据类型:series和dataframe。...pandas会根据索引对数据进行运算,若series之间有不同的索引,对应的值就为Nan。...如何从csv文件只读取前几行的数据 # 只读取前2行和指定列的数据 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets

    10K53

    Pandas Sort:你的 Python 数据排序指南

    Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...EPA 燃油经济性数据集非常棒,因为它包含许多不同类型的信息,您可以对其进行排序上,从文本到数字数据类型。该数据集总共包含八十三列。 要继续,您需要安装pandas Python 库。...因此,如果您计划执行多种排序,则必须使用稳定的排序算法。 在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。

    14.3K00

    python对100G以上的数据进行排序,都有什么好的方法呢

    Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...EPA 燃油经济性数据集非常棒,因为它包含许多不同类型的信息,您可以对其进行排序上,从文本到数字数据类型。该数据集总共包含八十三列。 要继续,您需要安装pandas Python 库。...因此,如果您计划执行多种排序,则必须使用稳定的排序算法。 在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。

    10K30

    数据分析之Pandas VS SQL!

    对于数据开发工程师或分析师而言,SQL 语言是标准的数据查询工具。本文提供了一系列的示例,说明如何使用pandas执行各种SQL操作。...SQL VS Pandas SELECT(数据选择) 在SQL中,选择是使用逗号分隔的列列表(或*来选择所有列): ? 在Pandas中,选择不但可根据列名称选取,还可以根据列所在的位置选取。...相关语法如下: loc,基于列label,可选取特定行(根据行index) iloc,基于行/列的位置 ix,为loc与iloc的混合体,既支持label也支持position at,根据指定行index...及列label,快速定位DataFrame的元素; iat,与at类似,不同的是根据position来定位的; ?...常见的SQL操作是获取数据集中每个组中的记录数。 ? Pandas中对应的实现: ? 注意,在Pandas中,我们使用size()而不是count()。

    3.2K20
    领券