首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pandas中找到多列的非零中值/均值?

在pandas中,可以使用DataFramemean()方法来计算每列的均值,使用DataFramemedian()方法来计算每列的中值。如果想要找到多列的非零中值或均值,可以先使用DataFramereplace()方法将0替换为NaN,然后再计算中值或均值。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd
import numpy as np

# 创建一个示例DataFrame
data = {'A': [1, 2, 0, 4, 5],
        'B': [0, 0, 0, 0, 0],
        'C': [3, 0, 0, 6, 7]}
df = pd.DataFrame(data)

# 将0替换为NaN
df.replace(0, np.nan, inplace=True)

# 计算非零中值
median = df.median()
print("非零中值:")
print(median)

# 计算非零均值
mean = df.mean()
print("非零均值:")
print(mean)

输出结果为:

代码语言:txt
复制
非零中值:
A    3.5
B    NaN
C    6.0
dtype: float64
非零均值:
A    3.0
B    NaN
C    5.333333
dtype: float64

在上述示例中,我们首先创建了一个包含多列的DataFrame。然后使用replace()方法将0替换为NaN。接着使用median()方法计算非零中值,使用mean()方法计算非零均值。最后打印出结果。

需要注意的是,如果某一列全部为0,则计算的中值和均值都会为NaN。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

为什么中位数(大多数时候)比平均值好

我们只对非数值使用众数(mode)。为了找到它,我们必须计算一个特定的单元出现在给定列中的频率。结果最好的单位是我们正在寻找的众数(mode)。...现在让我们转到平均值和中值。这两个值都显示了行中心的数字。但方式不同。 平均值是一个平均值(这好像是废话),我们可以通过汇总一行中的所有值,然后将结果除以它们的数量来计算它。让我们看看人口。...为了计算平均值,我们应该将所有国家的人口值相加,然后除以数据集中的国家数。幸运的是,pandas可以为我们做这件事。 ? 这个数字表明,在一个正常的国家,平均生活着大约3300万人。...通常中位数和中位数是相当接近的。如果不是,那么问题就出在异常值中—这些值与行中的所有其他值都非常不同。让我们做一个小图形。 ? 我们看到,大多数国家都集中在零附近。但有些数值与众不同。...,你最多可以移动一半的数据,所以中位数要比均值稳健的多 最后是计算的复杂性,均值只需要求和除,但中位数,我的理解的话,至少要排个序吧,排序的复杂度应该比直接加要复杂一些,而且很多数据的样本量都特别大,这时候计算均值要方便不少

3.8K10

Pandas速查卡-Python数据科学

numpy as np 导入数据 pd.read_csv(filename) 导入CSV文档 pd.read_table(filename) 导入分隔的文本文件 (如TSV) pd.read_excel...=n) 删除所有小于n个非空值的行 df.fillna(x) 用x替换所有空值 s.fillna(s.mean()) 将所有空值替换为均值(均值可以用统计部分中的几乎任何函数替换) s.astype(float...df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

9.2K80
  • 针对SAS用户:Python数据分析库pandas

    通过将.sum()方法链接到.isnull()方法,它会生成每个列的缺失值的计数。 ? 为了识别缺失值,下面的SAS示例使用PROC格式来填充缺失和非缺失值。...默认情况下,.dropna()方法删除其中找到任何空值的整个行或列。 ? ? .dropna()方法也适用于列轴。axis = 1和axis = "columns"是等价的。 ? ?...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。....fillna()方法返回替换空值的Series或DataFrame。下面的示例将所有NaN替换为零。 ? ?...该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ? 基于df["col6"]的平均值的填补方法如下所示。.

    12.1K20

    Python面试十问2

    四、如何快速查看数据的统计摘要 区别df.describe()和df.info() df.describe():默认情况下,它会为数值型列提供中心趋势、离散度和形状的统计描述,包括计数、均值、标准差、最小值...df.info():主要用于提供关于DataFrame的一般信息,如列索引、数据类型、非空值数量以及内存使用情况。它不会提供数值型数据的统计摘要,而是更多地关注于数据集的整体结构和数据类型。...五、pandas中的索引操作 pandas⽀持四种类型的多轴索引,它们是: Dataframe.[ ] 此函数称为索引运算符 Dataframe.loc[ ] : 此函数⽤于标签 Dataframe.iloc...六、pandas的运算操作  如何得到⼀个数列的最⼩值、第25百分位、中值、第75位和最⼤值?...先分组,再⽤ sum()函数计算每组的汇总数据  多列分组后,⽣成多层索引,也可以应⽤ sum 函数 分组后可以使用如sum()、mean()、min()、max()等聚合函数来计算每个组的统计值。

    8810

    Python进阶之Pandas入门(四) 数据清理

    引言 Pandas是数据分析中一个至关重要的库,它是大多数据项目的支柱。如果你想从事数据分析相关的职业,那么你要做的第一件事情就是学习Pandas。...处理空值有两种选择: 去掉带有空值的行或列 用非空值替换空值,这种技术称为imputation 让我们计算数据集的每一列的空值总数。...可能会有这样的情况,删除每一行的空值会从数据集中删除太大的数据块,所以我们可以用另一个值来代替这个空值,通常是该列的平均值或中值。 让我们看看在revenue_millions列中输入缺失的值。...如果您还记得我们从零开始创建DataFrames时,dict的键最后是列名。现在,当我们选择DataFrame的列时,我们使用方括号,就像访问Python字典一样。...: revenue.fillna(revenue_mean, inplace=True) 我们现在用列的平均值替换了所有的收益为空。

    1.8K60

    Python进阶之Pandas入门(一) 介绍和核心

    pandas将从CSV中提取数据到DataFrame中,这时候数据可以被看成是一个Excel表格,然后让你做这样的事情: 计算统计数据并回答有关数据的问题,比如每一列的平均值、中值、最大值或最小值是多少...列A和列B相关吗?C列中的数据分布情况如何? 通过删除缺失的值和根据某些条件过滤行或列来清理数据 在Matplotlib的帮助下可视化数据。绘制条形图、线条、直方图、气泡等。...DataFrame和Series在许多操作上非常相似,一个操作可以执行另一个操作,比如填充空值和计算平均值。...2 创建DataFrame 在Python中正确地创建DataFrame非常有用,而且在测试在pandas文档中找到的新方法和函数时也非常有用。...(purchases.columns) #打印列的索引 请大家逐一尝试这些函数。

    2.7K20

    三行代码产出完美数据分析报告!

    作者:杰少 AutoEDA四天王 简介 在三年前,我们做数据竞赛或者数据建模类的项目时,前期我们会耗费较多的时间去分析数据,但现在非常多擅长数据分析的大师们已经将我们平时常看的数据方式进行了集成,...其中: pandas_profiling的df.profile_report()扩展了pandas DataFrame以方便进行快速数据分析。...Pandas-Profiling对于每一列特征,特征的统计信息(如果与列类型相关)会显示在交互式 HTML的report中: Type:检测数据列类型; Essentials:类型、unique值、缺失值...分位数统计,如最小值、Q1、中位数、Q3、最大值、范围、四分位距 描述性统计数据,如均值、众数、标准差、总和、中值绝对偏差、变异系数、峰态、偏度 出现最多的值 直方图 高度相关变量、Spearman、...AutoViz的结果会以非常多的图片都形式存在文件夹下方。

    90230

    用Python也能进军金融领域?这有一份股票交易策略开发指南

    当然,这一切都在很大程度上依赖于一个根本性的理论或者说信仰,那就是任何在过去表现良好的策略也将在未来继续表现良好,以及,任何在过去表现不好的策略在未来也将会表现很差。...当然,请别担心,在这份教程中,我们已经为你载入了数据,所以在学习如何在金融中通过Pandas使用Python的时候,你不会面对任何问题。...回归中值策略,实际上是您相信股票会回到自己的平均水平,那么当您偏离这个平均值时您就可以利用它。 这听起来很实用,是吗? 除了回归中值策略,这种策略的另一个例子是与其相似的配对交易中值回归。...接下来,不要忘记链接mean()函数,以便计算滚动的平均值。 在计算了短期和长期窗口的平均值后,当短移动平均线跨过长移动平均线时,您应该创建一个信号,但只能在该周期大于最短移动平均窗口期间创建信号。...,这是你能在ziplineQuickstart guides(http://www.zipline.io/)中找到的标准示例。

    3K40

    数字图像处理学习笔记(十)——空间滤波

    如(10,15,20,20,20,20,20,25,100) 中值滤波算法的特点 ☆在去除噪音的同时,可以比较好地保留边的锐度和图像的细节(优于均值滤波器) ☆能够有效去除脉冲噪声:以黑白点叠加在图像上...很明显,中值滤波要比均值滤波在去除椒盐噪声方面效果好得多 图像锐化滤波器 引入原因:在使用图像平滑可让模糊图像达到图像降噪的目的,但同时存在一个问题就是会使得图像的边缘被淡化。...在图像微分锐化操作中,对于一阶微分的任何定义需要保证以下三点: 在恒定灰度区域的微分值为零 在灰度台阶或斜坡处微分值非零 沿着斜坡的微分值非零 同样类比得对于二阶微分的任何保证以下三点: 在恒定区域微分值为零...在灰度台阶或斜坡的起点处微分值非零 沿着斜坡的微分值非零 ?...注:在恒定区域微分值为零 在灰度台阶或斜坡的起点处微分值非零 沿着斜坡的微分值非零 锐化滤波器的主要用途: ☞突出图像中的细节,增强被模糊了的细节 ☞印刷中的细微层次强调

    2.4K20

    机器学习中处理缺失值的7种方法

    ---- 用平均值/中位数估算缺失值: 数据集中具有连续数值的列可以替换为列中剩余值的平均值、中值或众数。与以前的方法相比,这种方法可以防止数据丢失。...替换上述两个近似值(平均值、中值)是一种处理缺失值的统计方法。 ? 在上例中,缺失值用平均值代替,同样,也可以用中值代替。...这里'Age'列包含缺少的值,因此为了预测空值,数据的拆分将是, y_train: 数据[“Age”]中具有非空值的行 y_test: 数据[“Age”]中的行具有空值 X_train: 数据集[“Age...”]特征除外,具有非空值 X_test: 数据集[“Age”]特征除外,具有空值 from sklearn.linear_model import LinearRegression import pandas...「缺点」: 只作为真实值的代理 ---- 使用深度学习库-Datawig进行插补 这种方法适用于分类、连续和非数值特征。

    7.9K20

    机器学习特性缩放的介绍,什么时候为什么使用

    import pandas import numpy as np dataset = pandas.read_csv("....它衡量功能中价值的传播。这是最常用的之一。 ? 在标准缩放过程中,我们将特征的均值偏移为0,标准偏差为1。应用标准缩放器时,我们获得的值在-3到3范围内 ?...当对特征值应用标准偏差时,特征集中值的99.7%介于-3 SD(标准偏差)至3 SD(标准偏差)之间。 ? 让我们看一下示例: ?...在上述情况下,值在-3到3之间标准化,因此减小了数据列中值的范围。缩放这些值后,可以将其输入到机器学习算法进行进一步分析。...归一化对异常值的影响很高 非高斯曲线表示时的归一化效果很好 作者:Mayank Gupta deephub翻译组

    69020

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。...通过调用以下命令可以生成矩阵图: msno.matrix(df) 如结果图所示,DTS、DCAL和RSHA列显示了大量缺失数据。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。...第二列在左边,其余的列比较完整。 LITHOFACIES, GR, GROUP, WELL, 和 DEPTH_MD 都归为零,表明它们是完整的。

    4.8K30

    python数据分析——数据的选择和运算

    Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...Python的Pandas库为数据合并操作提供了多种合并方法,如merge()、join()和concat()等方法。...: 四、数据运算 pandas中具有大量的数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。...非空值计数 【例】对于存储在该Python文件同目录下的某电商平台销售数据product_sales.csv,形式如下所示,请利用Python对数据读取,并计算数据集每列非空值个数情况。...关键技术: mean()函数能够对对数据的元素求算术平均值并返回,程序代码如下所示: 中位数运算 中位数又叫作中值,按顺序排列的一组数据中位于中间位置的数,其不受异常值的影响。

    19310

    数据分析(四)

    0) # 查找每一列中最大的数字的位置 b1 = np.argmax(attr,axis=1) # 查找每一列中最小的数字的位置 c1 = np.argmin(attr,axis=1) # 平均值 d...= np.mean(attr,axis=0) 还有很多,求和sum,取中值median(加轴就取轴的,不加取全部),方差var(),标准差std(),极差ptp(),中值median等等。...是不相等的 np.nan == np.nan # 会返回False 3) # 计算数组中nan的个数 # 假如a中有nan值,我们可以找出这个值的个数 # count_nonzero统计非0数值的个数,...=a) 或者 np.count_nonzero(np.isnan(a)) 4) nan和其他任意值计算都是nan 5) 当我们计算的时候需要把nan替换成0或者均值,或者中值。...= 0: temp_col[np.isnan(temp_col)] = 0 print(t) pandas基础 numpy只能处理数值类型,而pandas是再numpy的基础上还能够处理字符串等其他类型

    93531

    小蛇学python(18)pandas的数据聚合与分组计算

    image.png 你一定注意到,在执行上面一行代码时,结果中没有key2列,这是因为该列的内容不是数值,俗称麻烦列,所以被从结果中排除了。...函数名 说明 count 分组中的非NA的值的数量 sum 非NA值的和 mean 非NA值得平均值 median 非NA值的算术中位数 std var 标准差,方差 max min 最大值,最小值 prod...非NA值的积 first last 第一个和最后一个非NA值 更加高阶的运用 我们拿到一个表格,想添加一个用于存放各索引分组平均值的列。...我们可以利用以前学习pandas的表格合并的知识,但是pandas也给我专门提供了更为简便的方法。 ?...是不是很神奇,如果不相信,我们可以来验证一下,按理说减去平均值后,数据的平均值会变成零。 ? image.png 可以看出来,就算不为零,也是很小的数。

    2.4K20

    使用pandas-profiling对时间序列进行EDA

    我们这里使用的数据集是美国的空气质量数据集,可以从 EPA 网站下载。本文完整的代码和示例可以在 GitHub 中找到。...在上面的pandas-profiling图中你会注意到的第一个区别是线图将替换被识别为时间相关的列的直方图。使用折线图,我们可以更好地了解所选列的轨迹和性质。...但是在查看警告时可以看到 NO2 均值是一个非平稳时间变量,它消除了这些图的可解释性。...ACF 图有助于确认我们怀疑的东西——NO2 平均值是非平稳的——因为 ACF 图值下降非常缓慢,而不是像平稳序列情况下所预期的那样快速下降到零。...发现有几列带有非平稳和季节性警报,所以数据处理的下一步是使它们平稳或确保我们的模型可以处理非平稳的数据点。

    1.2K20

    Pandas库

    DataFrame: DataFrame是Pandas的主要数据结构,用于执行数据清洗和数据操作任务。 它是一个二维表格结构,可以包含多列数据,并且每列可以有不同的数据类型。...DataFrame提供了灵活的索引、列操作以及多维数据组织能力,适合处理复杂的表格数据。 在处理多列数据时,DataFrame比Series更加灵活和强大。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...数据分组与聚合(Grouping and Aggregation) : 数据分组与聚合是数据分析中常用的技术,可以帮助我们对数据进行分组并计算聚合统计量(如求和、平均值等)。...它不仅支持浮点与非浮点数据里的缺失数据表示为NaN,还允许插入或删除DataFrame等多维对象的列。

    8410

    数据分析篇(五)

    # 查看详细信息,行,列,索引,类型,内存等 attr2.info() # 快速统计均值,标准差,最大值,最小值,四分位 attr2.describe() # 当然只会统计数字类型的。...20 10086 attr4.loc['1',:] # 李四 20 10086 attr4.loc[:,'age'] # 18 20 取多行 attr4.loc[['0','1']] 取多列...缺失数据的处理 我们如果读取爬去到的大量数据,可能会存在NaN值。 出现NaN和numpy中是一样的,表示不是一个数字。 我们需要把他修改成0获取其他中值,来减少我们计算的误差。...()) # 赋值为NaN值 att4['age'][0] = np.nan # 赋值为0的数据为NaN attr4[attr4==0] = np.nan nan是不会参与平均值等计算的,0会参与计算。...pandas 连接MongoDB数据库 # 导入操作MongoDB的模块 from pymongo import MongoClient import pandas as pd # 链接 client

    77820

    Python数据分析与实战挖掘

    [3]判定系数r² 3、主要函数 主要是Pandas用于数据分析和Matplotlib用于数据可视化 《贵阳大数据分析师培训机构 》 Pandas主要统计特征函数 sum 总和(按列) mean 算数平均值...x*=(x-min)/(max-min);缺点:异常值影响;之后的范围限制在[min,max]中 [2]零-均值规范化,也称标准差规范化,处理后[0,1]。...判断是否为空 Pandas notnull 判断是否非空 Pandas PCA 主成分分析 Scikit-Learn random 生成随机矩阵 Numpy 挖掘建模 分类与预测 主要分类与预测算法...将低维非线性可分转化为高维线性可分进行分析 常用插补方法 《 贵阳数据分析师》 均值/中位数/众数 根据属性值类型,取均值、中位数、众数进行插补 使用固定值 将缺失属性用常量替代 最近邻插补法 在记录中找到与缺失样本最接近的样本的该属性值进行插补...x*=(x-min)/(max-min);缺点:异常值影响;之后的范围限制在[min,max]中 [2]零-均值规范化,也称标准差规范化,处理后[0,1]。

    3.7K60
    领券