首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pandas dataframe中使用正则表达式,在一列中有不同的记录?

在pandas dataframe中使用正则表达式,可以通过str.contains()方法来实现。该方法用于检查DataFrame中的每个元素是否包含指定的模式。

下面是使用正则表达式在一列中筛选不同记录的示例:

  1. 导入pandas库:
代码语言:txt
复制
import pandas as pd
  1. 创建一个包含不同记录的DataFrame:
代码语言:txt
复制
data = {'col1': ['apple', 'banana', 'cat', 'dog', 'elephant']}
df = pd.DataFrame(data)
  1. 使用正则表达式筛选包含特定模式的记录:
代码语言:txt
复制
pattern = r'^[ae].*'
filtered_df = df[df['col1'].str.contains(pattern)]

上述代码中,pattern是一个正则表达式,^表示以某个字符开头,[ae]表示以字母'a'或'e'开头,.*表示任意字符的任意次数。df['col1'].str.contains(pattern)会返回一个布尔值的Series,表示每个元素是否匹配模式。然后,我们可以使用这个布尔值的Series来筛选DataFrame中的记录。

最后,filtered_df将只包含以字母'a'或'e'开头的记录。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

python数据科学系列:pandas入门详细教程

和DML操作在pandas中都可以实现 类比Excel的数据透视表功能,Excel中最为强大的数据分析工具之一是数据透视表,这在pandas中也可轻松实现 自带正则表达式的字符串向量化操作,对pandas...中的一列字符串进行通函数操作,而且自带正则表达式的大部分接口 丰富的时间序列向量化处理接口 常用的数据分析与统计功能,包括基本统计量、分组统计分析等 集成matplotlib的常用可视化接口,无论是series...尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ?...时间类型向量化操作,如字符串一样,在pandas中另一个得到"优待"的数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型列可用dt属性调用相应接口,这在处理时间类型时会十分有效。...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持

15.1K21

懂Excel就能轻松入门Python数据分析包pandas(十):查找替换

后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 无疑是数据处理的入门工具,他有许多便捷的功能,但是实际工作中的需求往往是越来越"疯狂",今天我们就来看看如何在...pandas 中实现 Excel 中的查找替换功能,并且最后做到 Excel 所做不到的。...,马上搞定: pandas 中也有同样的方法对应查找替换功能: - DataFrame.replace() - 参数1:查找值 - 参数2(value):替换值 案例2 但是,有时候情况会变得复杂...: - 大部分的异常值是 x ,但有一些是 xx Excel 中可以的查找值可以使用通配符,如下可以解决: - 查找值填 "x*" pandas 中,直接可以使用正则表达式,因此完全难不倒你:...总结 - DataFrame.replace() ,整表查找替换 - 参数1 : 指定查找值 - 参数2(value):替换的新值,可以用字典,用以不同列替换不同值 - 参数 regex:正则表达式

1.2K20
  • 懂Excel就能轻松入门Python数据分析包pandas(十):查找替换

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 无疑是数据处理的入门工具,他有许多便捷的功能,但是实际工作中的需求往往是越来越"疯狂",今天我们就来看看如何在...pandas 中实现 Excel 中的查找替换功能,并且最后做到 Excel 所做不到的。...,马上搞定: pandas 中也有同样的方法对应查找替换功能: - DataFrame.replace() - 参数1: 查找值 - 参数2(value): 替换值 案例2 但是,有时候情况会变得复杂...: - 大部分的异常值是 x ,但有一些是 xx Excel 中可以的查找值可以使用通配符,如下可以解决: - 查找值填 "x*" pandas 中,直接可以使用正则表达式,因此完全难不倒你:...总结 - DataFrame.replace() ,整表查找替换 - 参数1 : 指定查找值 - 参数2(value): 替换的新值,可以用字典,用以不同列替换不同值 - 参数 regex: 正则表达式

    1.5K10

    【Pandas教程】像写SQL一样用Pandas~

    ,譬如对A列使用sum(),对B列使用mean(),在SQL中其实很好实现的功能,在Pandas我们需要借助.agg()来实现 。...在Pandas中我们可以使用pandas.merge()来完成连接对操作。...内连接); on:连接键,必须在left和right两个DataFrame中存在,否则使用left_on和right_on; left_on:left中的连接键; right_on:right中的连接键...除了正则之外,其实在.str中还内置了很多字符串的方法,如切割(split),替换(replace)等等。...自定义函数 Pandas中内置很多常用的方法,譬如求和,最大值等等,但很多时候还是满足不了需求,我们需要取调用自己的方法,Pandas中可以使用map()和apply()来调用自定义的方法,需要注意下map

    2.3K30

    【如何在 Pandas DataFrame 中插入一列】

    为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。...在实际应用中,我们可以根据具体需求使用不同的方法,如直接赋值或使用assign()方法。 Pandas是Python中必备的数据处理和分析库,熟练地使用它能够极大地提高数据处理和分析的效率。

    1.1K10

    Pandas知识点-缺失值处理

    在获取数据时,可能会有一些数据无法得到,也可能数据本身就没有,造成了缺失值。对于这些缺失值,在获取数据时通常会用一些符号之类的数据来代替,如问号?,斜杠/,字母NA等。...to_replace和value不仅支持Python中的整型、字符串、列表、字典等,还支持正则表达式。...在实际的应用中,一般不会按列删除,例如数据中的一列表示年龄,不能因为年龄有缺失值而删除所有年龄数据。 how: how参数默认为any,只要一行(或列)数据中有空值就会删除该行(或列)。...假如空值在第一行或第一列,以及空值前面的值全都是空值,则无法获取到可用的填充值,填充后依然保持空值。...除了可以在fillna()函数中传入method参数指定填充方式外,Pandas中也实现了不同填充方式的函数,可以直接调用。

    5K40

    【强强联合】在Power BI 中使用Python(2)

    上一篇文章我们讲解了在Power BI中使用Python来获取数据的一些应用: 【强强联合】在Power BI 中使用Python(1) 这一篇我们将继续讲解如何在Power BI中使用Python进行数据清洗工作...理论上我们需要在这个地方键入: import pandas as pd 以表示我们要使用pandas库,但是Power BI在调用Python时,自动导入了pandas和matplotlib库,所以这一行写不写都一样...dataframe格式数据,“loc=1”代表在第一列数据后插入一列,列名是“add_100”,值是“Value”的值+100,第一行是1,add_100列第一行就是101,以此类推: ?...这种数据如果已经导入到Power BI中,在powerquery里是没有办法直接进行处理的,这时候就可以调用Python的re正则表达式了: import re import json # 自定义获取文本电子邮件的函数...这样我们就实现了在powerquery中使用正则表达式对数据进行清洗的目的。 ? 当然,也可以调用R、PHP或者js来实现相同的目的,方法大同小异,各位读者可以自行研究。

    3.3K31

    爬虫入门经典(二十四) | 爬取当当网图书信息并进行数据清洗

    4.1 读取数据 首先,我们借助 Pandas 包提供的 read_csv 方法读取原始数据,将其转换成 Pandas 中的 DataFrame 格式。注意由于数据中包含中文,需要正确设置字符编码。...在本demo中我们按照步骤完成数据清洗,主要任务为: 1)去掉当前价格这一列中的 ‘¥’ 符号,转换成数值格式。...在正则表达式中\d表示数字,+表示匹配前一个字符1次或无限次,常见的正则表达式符号含义见下表所示。 ? 上图是不是比较多,所以学长在百科上找到了另一个合集: ?...在Python中,re 包实现了正则表达式的匹配,常用的 search 函数能够完成匹配。下面我们编写 get_numers 函数用来提取一个字符串中的数值。...使用DataFrame的map方法可对当前价格这一列的每一个数据遍历执行,并取代原来的列。

    4.5K20

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    01 用Python读写CSV/TSV文件 CSV和TSV是两种特定的文本格式:前者使用逗号分隔数据,后者使用\t符。这赋予它们可移植性,易于在不同平台上共享数据。 1....用索引可以很方便地辨认、校准、访问DataFrame中的数据。索引可以是一列连续的数字(就像Excel中的行号)或日期;你还可以设定多列索引。...我们使用表达式生成价格的列表。如代码所示,对于列表对象,你可以调用.index(...)方法查找某一元素首次出现的位置。 5. 参考 查阅pandas文档中read_excel的部分。...使用DataFrame对象的.apply(...)方法遍历内部每一行。第一个参数指定了要应用到每行记录上的方法。axis参数的默认值为0。意味着指定的方法会应用到DataFrame的每一列上。...10)[['IATA', 'Airport_name']]) 如果想取出不止一列,可以以列表的形式传入;在我们的例子中,就是['IATA', 'Airport_name']。

    8.4K20

    python数据分析笔记——数据加载与整理

    9、10、11行三种方式均可以导入文本格式的数据。 特殊说明:第9行使用的条件是运行文件.py需要与目标文件CSV在一个文件夹中的时候可以只写文件名。...2、当文件没有标题行时 可以让pandas为其自动分配默认的列名。 也可以自己定义列名。 3、将某一列作为索引,比如使用message列做索引。通过index_col参数指定’message’。...5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。...7、对于不是使用固定分隔符分割的表格,可以使用正则表达式来作为read_table的分隔符。 (’\s+’是正则表达式中的字符)。...(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。

    6.1K80

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    由此我们可以进一步了解我们应该如何减少内存占用,下面我们来看一看pandas如何在内存中存储数据。...由于不同类型的数据是分开存放的,我们将检查不同数据类型的内存使用情况,我们先看看各数据类型的平均内存使用量: 由于不同类型的数据是分开存放的,我们将检查不同数据类型的内存使用情况,我们先看看各数据类型的平均内存使用量...pandas中的许多数据类型具有多个子类型,它们可以使用较少的字节去表示不同数据,比如,float型就有float16、float32和float64这些子类型。...你可以看到这些字符串的大小在pandas的series中与在Python的单独字符串中是一样的。...选用类别(categoricalas)类型优化object类型 Pandas在0.15版本中引入类别类型。category类型在底层使用整型数值来表示该列的值,而不是用原值。

    8.7K50

    懂Excel就能轻松入门pandas(一):筛选功能

    看图: - 为了与 pandas 行索引保持一致,这里添加的列值是从0开始 接着试试,"显示第3至6行",如下: - 功能卡"数据"页面,在"排序和筛选"中点击大大的"筛选"图标 - 点首行第一列的下角标签...- 默认是全选了,点一下"全选",即可取消所有选中的 - 分别点选对应的值即可 看看 pandas 中如何做到,如下: - pandas 中的 DataFrame 自带行索引 - 直接使用 df.loc..."住址内容有 x座 ,x是字母a至c,大小写都算",看看 pandas 怎么做: - contains 方法可以用正则表达式 值范围 "收入在5000至8000的男性",pandas 如下: 简单吧...想必有抬杠的小伙伴会说,既然 Excel 自带功能都有,用 pandas 干啥?当然是自动化啦。并且 pandas 中有许多功能,在 Excel 中需要用复杂的函数公式或 Vba 才能实现。...下期看看 Excel 的高级筛选功能,在 pandas 中是如何实现。

    2.3K30

    统计师的Python日记【第九天:正则表达式】

    正则表达式简介 虽然在SAS中学了正则表达式的基础,Python稍有不同,现在还是简单复习一下: (1)元字符 元字符是一系列代码,用来简化表达某种意思,比如: \d 表示数字 \D 表示非数字 \w...(2)函数 在SAS中,PRXPARSE()是获取一个正则表达式的pattern,在Python中对应的就是 compile() 。...所以search()只记录了第一个匹配项的开头和结束位置。 还有一个函数 match(),与search()不同之处在于,它只匹配字符串的开头部分: ?...正则表达式是文本分析的利器,在爬虫中用处也非常大。但本文中,我要挑战的是对DataFrame结构数据进行正则表达式的处理。...用正则表达式处理Pandas数据 (1)匹配行 我在SAS中用正则表达式解决的第一个问题是是这样的: (01)1872-8756 Body shop P1 Book B13 (05)9212-0098

    1.8K40

    懂Excel就能轻松入门pandas(一):筛选功能

    看图: - 为了与 pandas 行索引保持一致,这里添加的列值是从0开始 接着试试,"显示第3至6行",如下: - 功能卡"数据"页面,在"排序和筛选"中点击大大的"筛选"图标 - 点首行第一列的下角标签...- 默认是全选了,点一下"全选",即可取消所有选中的 - 分别点选对应的值即可 看看 pandas 中如何做到,如下: - pandas 中的 DataFrame 自带行索引 - 直接使用 df.loc...来个复杂一点的。 "血型值首字母是A"的记录。Excel 中的筛选也是强大的,直接有此功能。..."住址内容有 x座 ,x是字母a至c,大小写都算",看看 pandas 怎么做: - contains 方法可以用正则表达式 值范围 "收入在5000至8000的男性",pandas 如下: 简单吧...想必有抬杠的小伙伴会说,既然 Excel 自带功能都有,用 pandas 干啥?当然是自动化啦。并且 pandas 中有许多功能,在 Excel 中需要用复杂的函数公式或 Vba 才能实现。

    5.7K20

    【说站】python中pandas有哪些功能特色

    python中pandas有哪些功能特色 说明 1、按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同。...3、类比SQL的join和groupby功能,pandas可以很容易实现SQL这两个核心功能,实际上,SQL的绝大部分DQL和DML操作在pandas中都可以实现。...4、类比Excel的数据透视表功能,Excel中最为强大的数据分析工具之一是数据透视表,这在pandas中也可轻松实现。...5、自带正则表达式的字符串向量化操作,对pandas中的一列字符串进行通函数操作,而且自带正则表达式的大部分接口。 丰富的时间序列向量化处理接口。...常用的数据分析与统计功能,包括基本统计量、分组统计分析等。 集成matplotlib的常用可视化接口,无论是series还是dataframe,均支持面向对象的绘图接口。

    73520

    深入理解pandas读取excel,txt,csv文件等命令

    未指定的中间行将被删除(例如,跳过此示例中的2行) index_col(案例1) 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex。...默认为False date_parser 用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。...注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效) delim_whitespace New in version...要注意的是:排除前3行是skiprows=3 排除第3行是skiprows=3 对于不规则分隔符,使用正则表达式读取文件 文件中的分隔符采用的是空格,那么我们只需要设置sep=" "来读取文件就可以了。...在pandas读取文件的过程中,最常出现的问题,就是中文问题与格式问题,希望当你碰到的时候,可以完美的解决。 有任何问题,希望可以在评论区给我回复,期待和你一起进步,博客园-梦想橡皮擦

    12.3K40

    深入理解pandas读取excel,tx

    未指定的中间行将被删除(例如,跳过此示例中的2行) index_col(案例1) 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex。...默认为False date_parser 用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。...注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效) delim_whitespace New in version...要注意的是:排除前3行是skiprows=3 排除第3行是skiprows=[3] 对于不规则分隔符,使用正则表达式读取文件 文件中的分隔符采用的是空格,那么我们只需要设置sep=" "来读取文件就可以了...在pandas读取文件的过程中,最常出现的问题,就是中文问题与格式问题,希望当你碰到的时候,可以完美的解决。 有任何问题,希望可以在评论区给我回复,期待和你一起进步,博客园-梦想橡皮擦

    6.2K10

    数据科学竞赛:递增特征构建的简单实现

    就是3个月均aum之间的关系:如果是递增的就将新生成的特征记录为1,反之记录为0 数据准备 在进行实验之前我们进行数据的准备,我们设置的实验数据如下: import pandas as pd data...显然这个办法比较蠢,还好pandas中实现了一个方法我们可以直接的调用,比如以下几个例子(代码使用jupyter notebook): data_df['last_3m_avg_aum'].is_monotonic...(2)第2种方法是对目标dataframe进行转置,再使用自带的方法进行判断,接下来我将写一个函数,用来判断每一行数据是否都是递增的,并新增一列来存储判断的结果: import gc import pandas...另外上述方法中有一个小技巧,就是使用了gc.collect(),可以帮助我们在大量数据的情况下节省点内存。 为了解决这个函数跑不动的问题,我就又写了一个方法。这个方法最终是我构建特征的方案。...当我们处理的dataframe很大的时候,不同方法之间的时间差距会拉开的更多,大家可以创建一个超大的dataframe进行试验一下。

    91411
    领券