大矩阵求逆方法是指求解大矩阵的逆矩阵的算法。在数学中,矩阵的逆矩阵是指一个矩阵乘以它的逆矩阵等于单位矩阵。对于一个方阵,如果它是可逆的,那么它有一个唯一的逆矩阵。对于一个大矩阵,求解逆矩阵的方法有很多种,下面介绍几种常用的方法:
以上是常用的大矩阵求逆方法,但是对于特殊类型的矩阵,还有其他的求逆方法。需要根据具体情况选择合适的方法。
1.待定系数法 ** 矩阵A= 1, 2 -1,-3 假设所求的逆矩阵为 a,b c,d 则 这里写图片描述 从而可以得出方程组 a + 2c = 1 b + 2d = 0 -a...– 3c = 0 -b – 3d = 1 解得 a=3; b=2; c= -1; d= -1 2.伴随矩阵求逆矩阵 伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。...我们先求出伴随矩阵A*= -3, -2 1 , 1 接下来,求出矩阵A的行列式|A| =1*(-3) – (-1)* 2 = -3 + 2 = -1 从而逆矩阵A⁻¹=A*/|A| = A...*/(-1)= -A*= 3, 2 -1,-1 3.初等变换求逆矩阵 (下面我们介绍如何通过初等(行)变换来求逆矩阵) 首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵
补充:python+numpy中矩阵的逆和伪逆的区别 定义: 对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称B是A的逆矩阵...(此时的逆称为凯利逆) 矩阵A可逆的充分必要条件是|A|≠0。 伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。...代码如下: 1.矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a...)) # 对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 求逆,但必须先使用matirx转化 A = np.matrix(a) print(A.I) 2.矩阵求伪逆 import numpy...A 为奇异矩阵,不可逆 print(np.linalg.pinv(A)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数 这就是矩阵的逆和伪逆的区别 截至2020/10
在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。...=0,我们就称A为非奇异矩阵。奇异矩阵是没有逆矩阵的。...最后我想说的是我本来想求逆矩阵的,不凑巧找了个奇异矩阵,饶恕我吧:( 伴随矩阵 Adjugate Matrix 伴随矩阵是将matrix of cofactors进行转置(transpose)之后得到的矩阵...,因此没有逆矩阵,但如果是非奇异矩阵,我们则可以按照之前的公式求得逆矩阵。...逆矩阵计算 初等变换 求解逆矩阵除了上面的方法外,还可以用更加直观的方法进行求解,这就是初等变换,其原理就是根据A乘以A的逆等于单位矩阵I这个原理,感兴趣的同学可以看参考链接中的视频。
一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。...适合编程的求逆矩阵的方法如下: 1、对可逆矩阵A进行QR分解:A=QR 2、求上三角矩阵R的逆矩阵 3、求出A的逆矩阵:A^(-1)=R^(-1)Q^(H) 以上三步都有具体的公式与之对应...]={ 0};//R的逆矩阵 double invA[SIZE][SIZE]={ 0};//A的逆矩阵,最终的结果 //={0};// double matrixR1[SIZE][SIZE..., 0.4423 , 0.8878 , 0.7904 , 0.8620 , 0.7487 , 0.6787 }; /*/ 函数名:int main() 输入: 输出: 功能:求矩阵的逆...pure C language 首先对矩阵进行QR分解之后求上三角矩阵R的逆阵最后A-1=QH*R-1,得到A的逆阵。
看到刚学线代那会儿瞎整的求矩阵的逆的代码。...co2[i]){ co2[i]=1; int nxs=0; for(int j=i+1;j<=n;j++)//列举比i大的数...(等于0),不能求逆哦!"...<<endl; else { cout<<"那现在你可以输入这个矩阵了,我不会算有分数和小数的矩阵哦!...\n(请化为全部是整数的矩阵再输入)"<<endl; memset(c,0,sizeof(c)); for(int i=1;i<=n;i++)
求出逆矩阵的2种手算方法:待定系数法、伴随矩阵法 待定系数法求逆矩阵: 首先,我们来看如何使用待定系数法,求矩阵的逆。...举例: 矩阵A= 1 2 -1 -3 假设所求的逆矩阵为 a b c d 则 从而可以得出方程组 a+2c=1 b+2d=0 -a-3c=0 -b-3d=1 解得 a=3 b=...2 c=-1 d=-1 所以A的逆矩阵A⁻¹= 3 2 -1 -1 伴随矩阵求逆矩阵: 伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。...我们先求出伴随矩阵A*= -3 -2 1 1 接下来,求出矩阵A的行列式 |A| =1*(-3)-(-1)2 =-3+2 =-1 从而逆矩阵A⁻¹=A/|A| = A*/(-1)=-A*=...3 2 -1 -1 下面这个是三种方法,主要看第三种即可,即化为行阶梯矩阵然后数非零行数即可 https://blog.csdn.net/u010551600/article/details/81504909
int flag = 1; if ((i + j) & 1) flag = -1; bansui[j][i] = f(yuzi,n-1)*flag; } } printf("伴随矩阵为...{ for (int j = 0; j < n; j++) { printf("%d ", bansui[i][j]); } printf("\n"); } printf("原矩阵对应的行列式的值为...:\n"); printf("%d", f(juzhen, n)); } int main() { printf("请输入矩阵阶数\n"); scanf("%d", &n); for (int
作为一只数学基础一般般的程序猿,有时候连怎么求逆矩阵都不记得,之前在wikiHow上看了一篇不错的讲解如何求3×3矩阵的逆矩阵的文章,特转载过来供大家查询以及自己备忘。...行列式的值通常显示为逆矩阵的分母值,如果行列式的值为零,说明矩阵不可逆。 什么?行列式怎么算也不记得了?我特意翻出了当年的数学课件。 好的,下面是第二步求出转置矩阵。...第四步,将它们表示为如图所示的辅助因子矩阵,并将每一项与显示的符号相乘。这样就得到了伴随矩阵(有时也称为共轭矩阵),用 Adj(M) 表示。...第五步,由前面所求出的伴随矩阵除以第一步求出的行列式的值,从而得到逆矩阵。 注意,这个方法也可以应用于含变量或未知量的矩阵中,比如代数矩阵 M 和它的逆矩阵 M^-1 。...伴随矩阵是辅助因子矩阵的转置,这就是为什么在第二步中我们要将矩阵转置以求出辅助因子的转置矩阵。 可以通过将 M 与 M^-1相乘检验结果。你应该能够发现,M*M^-1 = M^-1*M = I.
1:导入包numpy from numpy import * 2: 定义初始化矩阵 a1 = mat([[3,4],[2,16]]) //这是一个2×2的矩阵 3:求a1的逆矩阵 a2
mat->data.fl[i*3+j]=Matrix[i][j]; } } cvInvert(mat,Imat,CV_SVD);//求逆矩阵...printf("原矩阵::\n"); printMatrix(mat); printf(" 逆矩阵::\n"); printMatrix
方法一:使用inv()函数求矩阵的逆 第一步:打开matlab之后,在命令行窗口中输入a=[1 2 3;4 5 6; 7 8 9],新建一个a方矩阵,如下图所示: 第二步:在命令行窗口中输入inv...(a),按回车键,可以看到得到了矩阵的逆,如下图所示: 注意:a矩阵可逆的条件是非奇异 方法二:使用a^-1格式求矩阵的逆 第一步:在命令行窗口中输入a^-1,按回车键,可以得到矩阵的逆,如下图所示
大家好,又见面了,我是你们的朋友全栈 matlab矩阵求逆矩阵 因为 所以该矩阵可逆,根据 ,其中 得到 计算矩阵A每个元素的代数余子式: 所以 可得: matlab
矩阵求逆的简单实现 矩阵求逆有很多种方法,使用伴随矩阵可能是相对易于编码的方式,在此简单列一下实现(Lua): -- matrix store is table in row order -- e.g...adjm[8] / det inv_m3[9] = adjm[9] / det return inv_m3 end end 有兴趣的朋友可以求解下矩阵...: local m3 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } 的逆矩阵,结果可能会出人意料哦~
矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a)) #...对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 更方便的求逆 A = np.matrix(a) print(A.I) 2....矩阵求伪逆 import numpy as np # 定义一个奇异阵 A A = np.zeros((4, 4)) A[0, -1] = 1 A[-1, 0] = -1 A = np.matrix(A...) print(A) # print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆 print(np.linalg.pinv(a)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv
高斯消元法可以用来找出一个可逆矩阵的逆矩阵。设A 为一个N * N的矩阵,其逆矩阵可被两个分块矩阵表示出来。...//输出矩阵n*n bool Gauss(float A[][N], float B[][N], int n); //采用部分主元的高斯消去法求方阵A的逆矩阵B int main() {..."采用逆矩阵的定义法求矩阵的逆矩阵!...\n"; } free(buffer); //释放内存空间 cout << "采用部分主元的高斯消去法求方阵的逆矩阵!...for (j = 0; j < n; j++) { cin >> a[i][j]; } } //运用高斯消去法求该矩阵的逆矩阵并输出
矩阵求逆import numpy as npa = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组)print(np.linalg.inv(a)) # 对应于...MATLAB中 inv() 函数# 矩阵对象可以通过 .I 更方便的求逆A = np.matrix(a)print(A.I)2....矩阵求伪逆import numpy as np# 定义一个奇异阵 AA = np.zeros((4, 4))A[0, -1] = 1A[-1, 0] = -1A = np.matrix(A)print(...A)# print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆print(np.linalg.pinv(a)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数
我们知道求矩阵的逆具有非常重要的意义,本文分享给大家如何针对3阶以内的方阵,求出逆矩阵的3种手算方法:待定系数法、伴随矩阵法、初等变换法(只介绍初等行变换) 待定系数法求逆矩阵 1 首先,我们来看如何使用待定系数法...,求矩阵的逆。...=1 解得 a=3 b=2 c=-1 d=-1 4 所以A的逆矩阵A⁻¹= 3 2 -1 -1 END 伴随矩阵求逆矩阵 1 伴随矩阵是矩阵元素所对应的代数余子式...我们先求出伴随矩阵A*= -3 -2 1 1 2 接下来,求出矩阵A的行列式 |A| =1*(-3)-(-1)*2 =-3+2 =-1 3 从而逆矩阵A⁻¹=A*/|A...| = A*/(-1)=-A*= 3 2 -1 -1 END 初等变换求逆矩阵 1 下面我们介绍如何通过初等(行)变换来求逆矩阵。
矩阵求逆运算有多种算法: 伴随矩阵的思想,分别算出其伴随矩阵和行列式,再算出逆矩阵; LU分解法(若选主元即为LUP分解法: Ax = b ==> PAx = Pb ==>LUx = Pb ==> Ly... = Pb ==> Ux = y ,每步重新选主元),它有两种不同的实现; A-1=(LU)-1=U-1L-1,将A分解为LU后,对L和U分别求逆,再相乘; 通过解线程方程组Ax=b的方式求逆矩阵。...b分别取单位阵的各个列向量,所得到的解向量x就是逆矩阵的各个列向量,拼成逆矩阵即可。 下面是这两种方法的c++代码实现,所有代码均利用常规数据集验证过。...0,无法求逆。...LU分解法中,还可以先分别求出U和L的逆,再相乘,此法其实与常规LU分解法差不多。 其他: 文章中用到了矩阵的原地转置算法,具体请参考第4篇文献,这种方法降低了空间复杂度。
首先要明确一点:非方阵不能求逆 也就是 n == m需要去判断的,a.length == a[0].length 为了更好的看清代码,我们先看下数学过程: /** * 矩阵求逆 *...* @param args * 参数a是个浮点型(double)的二维数组, * @return 返回值是一个浮点型二维数组(矩阵a的逆矩阵) */ public
今天遇到一个很奇怪的问题:一个方阵,逆矩阵存在,但不是满秩。 问题来源 在实际应用的时候,发现返回值都是0,于是跟踪到这里,发现了这个问题:JtJ不是满秩,因此JtJN保持初始化的零值。...结论 判断矩阵的逆矩阵是否存在时,一定要特别小心用满秩作为条件来判断,很可能会由于精度原因导致不可预估的结果。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
领取专属 10元无门槛券
手把手带您无忧上云