首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在一列中获取spark dataframe的所有非空列

在Spark中,可以使用columns属性获取DataFrame的所有列名。然后,可以使用dropna()方法过滤掉包含空值的列,最后返回非空列的列表。

以下是一个完整的答案示例:

要获取Spark DataFrame的所有非空列,可以按照以下步骤进行操作:

  1. 首先,使用columns属性获取DataFrame的所有列名。columns属性返回一个包含所有列名的列表。
  2. 接下来,使用dropna()方法过滤掉包含空值的列。dropna()方法用于删除包含空值的行或列。在这里,我们将使用subset参数指定要删除的列,并将其设置为DataFrame的所有列。
  3. 最后,返回非空列的列表。

下面是一个示例代码:

代码语言:txt
复制
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, "Engineer"),
        ("Bob", None, "Developer"),
        (None, 30, "Manager")]

df = spark.createDataFrame(data, ["Name", "Age", "Role"])

# 获取DataFrame的所有列名
all_columns = df.columns

# 过滤掉包含空值的列
non_null_columns = [col for col in all_columns if df.dropna(subset=[col]).count() > 0]

# 打印非空列的列表
print(non_null_columns)

输出结果将是一个包含非空列名的列表,例如:

代码语言:txt
复制
['Name', 'Age', 'Role']

这样,你就可以获取Spark DataFrame的所有非空列了。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体的云计算品牌商,我无法提供相关链接。但你可以通过访问腾讯云官方网站,搜索相关产品来获取更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

5.6K30

问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

引言:本文整理自vbaexpress.com论坛,有兴趣的朋友可以研阅。...Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...A:实现上图1中所示效果的VBA代码如下: Sub ColorText() Dim ws As Worksheet Dim rDiseases As Range Dim rCell...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格中的数据并存放到数组中...,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。

7.2K30
  • 新增非空约束字段在不同版本中的演进

    对于IS NULL,由于查询条件满足约束的条件,因此Oracle会做全表扫描,并且省略了type is not null的过滤,直接返回所有记录,就造成了type非空的假象。...出现以上问题的核心,还是为何有为空的记录存储于有NOT NULL非空约束的表中。...这种新增非空约束字段在不同版本中确实有一些细节的变化,下面做一些简单测试。...table bisal add name varchar2(10) default '' not null; 10.2.0.3库,从报错信息看ORA-01407,不能更新NAME列为空,可以看出此时是要将表中已存在记录的新列...至此,12c修复了11g中这个非空约束字段允许保存空值的bug,同时又支持11g新增默认值非空字段使用数据字典存储的特性,并且做了扩展支持,满足范围更大了。 小问题隐藏了大智慧。

    3.1K10

    问与答63: 如何获取一列数据中重复次数最多的数据?

    学习Excel技术,关注微信公众号: excelperfect Q:如下图1所示,在工作表列A中有很多数据(为方便表述,示例中只放置了9个数据),这些数据中有很多重复数据,我想得到重复次数最多的数据是那个...,示例中可以看出是“完美Excel”重复的次数最多,如何获得这个数据?...在上面的公式中: MATCH($A$1:$A$9,$A$1:$A$9,0) 在单元格区域A1:A9中依次分别查找A1至A9单元格中的数据,得到这些数据第1次出现时所在的行号,从而形成一个由该区域所有数据第一次出现的行号组组成的数字数组...MODE函数从上面的数组中得到出现最多的1个数字,也就是重复次数最多的数据在单元格区域所在的行。将这个数字作为INDEX函数的参数,得到想应的数据值。...MyRange,那么上述数组公式可写为: =INDEX(MyRange,MODE(MATCH(MyRange,MyRange,0))) 但是,如果单元格区域中有几个数据重复次数相同且都出现次数最多,则上述公式只会获取第

    3.6K20

    Excel公式技巧21: 统计至少在一列中满足条件的行数

    在这篇文章中,探讨一种计算在至少一列中满足规定条件的行数的解决方案,示例工作表如下图1所示,其中详细列出了各个国家在不同年份废镍的出口水平。 ?...(通常,COUNTIFS函数引用整列的能力更有效),在某些情况下这可能是值得的。...下面,考虑希望得出的结果涉及的列数不只是两列,甚至可能是多列的情况。例如,假设要确定从2004年到2012年每年至少有一个数字大于或等于1000的国家的数量。...然而,公式显得太笨拙了,如果考虑的列数不是9而是30,那会怎样! 幸运的是,由于示例中列区域是连续的,因此可以在单个表达式中查询整个区域(B2:J14),随后适当地操纵这个结果数组。...并且,由于上述数组(一个13行乘9列的数组)包含9列,因此我们用来形成乘积的矩阵的行数必须等于该数组的列数。

    4.1K10

    【Python环境】使用Python Pandas处理亿级数据

    首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。...尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    2.3K50

    在Python中利用Pandas库处理大数据

    首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。...尝试了按列名依次计算获取非 空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    2.9K90

    【学习】在Python中利用Pandas库处理大数据的简单介绍

    首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。...尝试了按列名依次计算获取非 空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    3.2K70

    使用Python Pandas处理亿级数据

    首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。...尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    6.8K50

    使用Python Pandas处理亿级数据

    由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。...首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    2.2K70

    使用 Pandas 处理亿级数据

    首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 *DataFrame.notnull() *,Pandas会将表中所有数据进行null计算,以True/False...Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。...尝试了按列名依次计算获取非空列,和 DataFrame.dropna()两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个",",所以移除的9800万...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

    2.2K40

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...df=df.rename(columns={'a':'aa'}) # spark-方法1 # 在创建dataframe的时候重命名 data = spark.createDataFrame(data...-方法4 # alias 方法 color_df.select(color_df.color.alias('color2')).show() 3、 选择和切片筛选 # 1.列的选择 # 选择一列的几种方式...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...操作中,我们得到一个有缺失值的dataframe,接下来将对这个带有缺失值的dataframe进行操作 # 1.删除有缺失值的行 clean_data=final_data.na.drop() clean_data.show

    10.5K10

    PySpark SQL——SQL和pd.DataFrame的结合体

    最大的不同在于pd.DataFrame行和列对象均为pd.Series对象,而这里的DataFrame每一行为一个Row对象,每一列为一个Column对象 Row:是DataFrame中每一行的数据抽象...Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...SQL中"*"提取所有列,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为...select等价实现,二者的区别和联系是:withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

    10K20

    Excel公式练习35: 拆分连字符分隔的数字并放置在同一列中

    本次的练习是:在单元格区域A1:A6中,有一些数据,有的是单独的数字,有的是由连字符分隔的一组数字,例如13-16表示13、14、15、16,现在需要将这些数据拆分并依次放置在列D中,如下图1所示。...因为这两个相加的数组正交,一个6行1列的数组加上一个1行4列的数组,结果是一个6行4列的数组,有24个值。...其实,之所以生成4列数组,是为了确保能够添加足够数量的整数,因为A1:A6中最大的间隔范围就是4个整数。...例如对于上面数组中的第4行{10,11,12,13},在last数组中对应的值是11,因此剔除12和13,只保留10和11。...综上,在单元格D1中原来的公式: =IF(ROWS($D$1:$D1)>SUM(last-first+1),"",SMALL(IF(first+TRANSPOSE(ROW(INDIRECT("1:"&MAX

    3.7K10

    Pandas vs Spark:获取指定列的N种方式

    无论是pandas的DataFrame还是spark.sql的DataFrame,获取指定一列是一种很常见的需求场景,获取指定列之后可以用于提取原数据的子集,也可以根据该列衍生其他列。...在两个计算框架下,都支持了多种实现获取指定列的方式,但具体实现还是有一定区别的。 01 pd.DataFrame获取指定列 在pd.DataFrame数据结构中,提供了多种获取单列的方式。...02 spark.sql中DataFrame获取指定列 spark.sql中也提供了名为DataFrame的核心数据抽象,其与Pandas中DataFrame有很多相近之处,但也有许多不同,典型区别包括...:Spark中的DataFrame每一列的类型为Column、行为Row,而Pandas中的DataFrame则无论是行还是列,都是一个Series;Spark中DataFrame有列名,但没有行索引,...在Spark中,提取特定列也支持多种实现,但与Pandas中明显不同的是,在Spark中无论是提取单列还是提取单列衍生另外一列,大多还是用于得到一个DataFrame,而不仅仅是得到该列的Column类型

    11.5K20

    把表中的所有错误自动替换为空?这样做就算列数变了也不怕!

    小勤:怎么把表里面的错误都替换成为空值? 大海:Power Query里选中全表,替换错误值啊! 小勤:这个我知道啊。但是这个表的列是动态的,下次多了一列这个方法就不行了,又得重新搞一遍。...大海:首先,我们要得到表的所有列的列名,可以用函数Table.ColumnNames,如下图所示: 小勤:嗯,这个函数也简单。但是,怎么再给每个列名多带一个空值呢?...比如,我们还可以再构造一个列表,里面每一个元素都是空值,列名有多少个值,我们就重复多少个空值,如下所示: 小勤:理解了,就是给一个初始列表,然后按表的列数(Table.ColumnCount)进行重复...大海:其实长公式就是这样一步步“凑”成的,另外,注意你“更改的类型”步骤里的列是固定的哦。 小勤:嗯,这个我知道。后面我再按需要去掉这个步骤或做其他修改就是了。...而且,其他生成固定列参数的公式也可能可以参考这种思路去改。 大海:对的。这样做真是就算列数变了也不怕了。

    2.1K30

    浅谈pandas,pyspark 的大数据ETL实践经验

    --notest /your_directory 2.2 指定列名 在spark 中 如何把别的dataframe已有的schame加到现有的dataframe 上呢?...新增一列并赋值 http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...DataFrame使用isnull方法在输出空值的时候全为NaN 例如对于样本数据中的年龄字段,替换缺失值,并进行离群值清洗 pdf["AGE"] = pd.to_numeric(pdf["AGE"],...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。

    5.5K30
    领券