首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel公式技巧71:查找一列中有多少个值出现在另一列中

学习Excel技术,关注微信公众号: excelperfect 有时候,我们想要知道某列中有多少个值同时又出现在另一列中,例如下图1所示,列B中有一系列值,列D中有一系列值,哪些值既出现有列B中又出现在列...因为数据较少,不难看出,在列B中仅有2个值出现在列D中,即“完美Excel”和“Office”。 ?...2 公式中: MATCH(B3:B13,B3:B13,0) 查找单元格区域B3:B13中每个单元格的值在该区域首次出现的位置,得到数组: {1;2;3;1;5;6;2;3;5;1;2} 公式中: ROW...{TRUE;TRUE;TRUE;FALSE;TRUE;TRUE;FALSE;FALSE;FALSE;FALSE;FALSE} 其中TRUE表明该单元格中的值首次在该区域出现,FALSE表明该单元格中的值已经在前面出现过...传递给COUNT函数统计数组中数字的个数: COUNT({1;5;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A}) 得到结果: 2 即列B中有两个值在列D中出现

3.3K20

问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...图1 如何使用VBA代码实现?...(iDisease)) End If Loop Next iDisease Next rCell End Sub 代码中使用...Split函数以回车符来拆分单元格中的数据并存放到数组中,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。...Bug:通常是交替添加红色和绿色,但是当句子中存在多个匹配或者局部匹配时,颜色会打乱。

7.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。...首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    如何使用Excel将某几列有值的标题显示到新列中

    如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....- - - - 4 - - - 在开始,我们曾经使用INDEX + MATCH的方式,但是没有成功,一直是N/A https://superuser.com/questions/1300246/if-cell-contains-value-then-column-header...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK

    11.3K40

    合并列,在【转换】和【添加列】菜单中的功能竟有本质上的差别!

    有很多功能,同时在【转换】和【添加】两个菜单中都存在,而且,通常来说,它们得到的结果列是一样的,只是在【转换】菜单中的功能会将原有列直接“转换”为新的列,原有列消失;而在【添加】菜单中的功能,则是在保留原有列的基础上...比如下面这份数据: 将“产品1~产品4”合并到一起,通过添加列的方式实现: 结果如下,其中的空值直接被忽略掉了: 而通过转换合并列的方式: 结果如下,空的内容并没有被忽略,所以中间看到很多个连续分号的存在...原来,添加列里使用的内容合并函数是:Text.Combine,而转换里使用的内容合并函数是:Combiner.CombineTextByDelimiter。...那么问题来了,如果希望转换的时候直接忽略空值进行合并呢?...显然,我们只要将其所使用的函数改一下就OK了,比如转换操作生成的步骤公式修改如下: 同样的,如果希望添加列里,内容合并时保留null值,则可以进行如下修改: 这个例子,再次说明,绝大多数的时候,我们只需要对操作生成的步骤公式进行简单的调整

    2.6K30

    转换程序的一些问题:设置为 OFF 时,不能为表 Test 中的标识列插入显式值。8cad0260

    因为先前的转换程序备份都没了:( 现在又重新开始学2005,所以借此准备再次写一个转换程序(针对asp.net forums) 考虑到一个问题,先前我都是靠内部存储过程进行注册、发帖、建立版面的,...可这次我是想在此基础上,能变成能转换任何论坛的,因此不想借助他自带的存储过程。...先前有一点很难做,因为一般的主键都是自动递增的,在自动递增的时候是不允许插入值的,这点让我一只很烦,今天有时间,特地建立了一个表来进行测试 字段名 备注 ID 设为主键 自动递增 Name 字符型...insert into [Test] (id,name) values (4,'asdf'); 很明显,抛出一个Sql错误: 消息 544,级别 16,状态 1,第 1 行 当  设置为 OFF 时,...不能为表 'Test' 中的标识列插入显式值。

    2.3K50

    Spark的Ml pipeline

    例如,a DataFrame具有可以存储文本,特征向量,真实标签和预测值的不同列。...通常情况下,转换器实现了一个transform方法,该方法通过给Dataframe添加一个或者多个列来将一个DataFrame转化为另一个Dataframe。...例如:一个特征转换器可以获取一个dataframe,读取一列(例如,text),然后将其映射成一个新的列(例如,特征向量)并且会输出一个新的dataframe,该dataframe追加了那个转换生成的列...因此,在pipeline的fit()方法运行后,它会产生一个PipelineModel,其也是一个Transformer。这PipelineModel是在测试时使用 ; 下图说明了这种用法。 ?...在一个pipeline中两个算法都使用了maxIter。 1.8 保存或者加载管道 通常情况下,将模型或管道保存到磁盘供以后使用是值得的。

    2.6K90

    PySpark SQL——SQL和pd.DataFrame的结合体

    Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...以上主要是类比SQL中的关键字用法介绍了DataFrame部分主要操作,而学习DataFrame的另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空值行 实际上也可以接收指定列名或阈值...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选select) show:将DataFrame显示打印...、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可。

    10K20

    深入理解XGBoost:分布式实现

    XGBoost4J-Spark在jvm-package中实现,因此在工程中调用XGBoost4J时,只需在pom.xml文件中加入如下依赖即可: ml.dmlc...missing:数据集中指定为缺省值的值(注意,此处为XGBoost会将 missing值作为缺省值,在训练之前会将missing值置为空)。 模型训练完成之后,可将模型文件进行保存以供预测时使用。...VectorSlicer:从特征向量中输出一个新特征向量,该新特征向量为原特征向量的子集,在向量列中提取特征时很有用。 RFormula:选择由R模型公式指定的列。...Transformer:Transformer可以看作将一个DataFrame转换成另一个DataFrame的算法。...这些阶段按顺序执行,当数据通过DataFrame输入Pipeline中时,数据在每个阶段按相应规则进行转换。在Transformer阶段,对DataFrame调用transform()方法。

    4.2K30

    2021年大数据Spark(二十四):SparkSQL数据抽象

    (以列(列名,列类型,列值)的形式构成的分布式的数据集,按照列赋予不同的名称) DataFrame有如下特性: 1)、分布式的数据集,并且以列的方式组合的,相当于具有schema的RDD; 2)、相当于关系型数据库中的表...方式二:指定下标,知道类型 方式三:通过As转换类型 Dataset 引入 Spark在Spark 1.3版本中引入了Dataframe,DataFrame是组织到命名列中的分布式数据集合,但是有如下几点限制...此外RDD与Dataset相比较而言,由于Dataset数据使用特殊编码,所以在存储数据时更加节省内存。...在数据集的核心 API是一个称为编码器的新概念,它负责在JVM对象和表格表示之间进行转换。表格表示使用Spark内部Tungsten二进制格式存储,允许对序列化数据进行操作并提高内存利用率。...由于DataFrame每一行的数据结构一样,且存在schema中,Spark通过schema就能读懂数据,因此在通信和IO时只需要序列化和反序列化数据,而结构部分不用。

    1.2K10

    PySpark UD(A)F 的高效使用

    所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...下图还显示了在 PySpark 中使用任意 Python 函数时的整个数据流,该图来自PySpark Internal Wiki....在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。

    19.7K31

    Databircks连城:Spark SQL结构化数据分析

    Spark SQL在处理JSON数据时可以自动扫描整个数据集,得到所有记录中出现的数据列的全集,推导出完整的schema。(对于同名但不同类型的列,Spark SQL会尝试规约出一个公共类型。) ?...在使用Python RDD API时,Python VM和JVM之间需要进行大量的跨进程数据交换,从而拖慢了Python RDD API的速度。...另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。...上文讨论分区表时提到的分区剪枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等一些基本的统计信息。

    1.9K101

    Spark 基础(一)

    Spark应用程序通常是由多个RDD转换操作和Action操作组成的DAG图形。在创建并操作RDD时,Spark会将其转换为一系列可重复计算的操作,最后生成DAG图形。...可以使用read方法 从外部数据源中加载数据或直接使用Spark SQL的内置函数创建新的DataFrame。创建DataFrame后,需要定义列名、列类型等元信息。...数据变换:可以对一个DataFrame对象执行多种不同的变换操作,如对列重命名、字面量转换、拆分、连接和修改某个列及配合 withColumn() 操作,还可对数据进行类型转换。...特征提取与转换:波士顿房价数据集中包含了多个特征(如房屋面积、犯罪率、公共设施情况等),Spark中可以使用VectorAssembler特征转换器将这些特征合并为一个向量,供下一步机器学习算法使用。...模型调优:在模型调优时需要注意过拟合和欠拟合问题,另外通过并行化训练、优化内存使用等手段提高Spark训练模型的效率。

    84940

    简单回答:SparkSQL数据抽象和SparkSQL底层执行过程

    (以列(列名,列类型,列值)的形式构成的分布式的数据集,按照列赋予不同的名称) ?...Dataset 引入 Spark在Spark 1.3版本中引入了Dataframe,DataFrame是组织到命名列中的分布式数据集合,但是有如下几点限制: 编译时类型不安全:Dataframe API...在数据集的核心 API是一个称为编码器的新概念,它负责在JVM对象和表格表示之间进行转换。表格表示使用Spark内部Tungsten二进制格式存储,允许对序列化数据进行操作并提高内存利用率。...由于DataFrame每一行的数据结构一样,且存在schema中,Spark通过schema就能读懂数据,因此在通信和IO时只需要序列化和反序列化数据,而结构部分不用。...列值裁剪 Column Pruning, 在谓词下推后, people 表之上的操作只用到了 id 列, 所以可以把其它列裁剪掉, 这样可以减少处理的数据量, 从而优化处理速度 还有其余很多优化点, 大概一共有一二百种

    1.9K30

    专业工程师看过来~ | RDD、DataFrame和DataSet的细致区别

    而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。...另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。...上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等 一些基本的统计信息。...得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。

    1.3K70

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    withColumn--- 一种方式通过functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3...随机抽样有两种方式,一种是在HIVE里面查数随机;另一种是在pyspark之中。...另一种方式通过另一个已有变量: result3 = result3.withColumn('label', df.result*0 ) 修改原有df[“xx”]列的所有值: df = df.withColumn...-------- pandas-spark.dataframe互转 Pandas和Spark的DataFrame两者互相转换: pandas_df = spark_df.toPandas() spark_df...不能任意添加列,只能通过合并进行; pandas比Pyspark DataFrame有更多方便的操作以及很强大 转化为RDD 与Spark RDD的相互转换: rdd_df = df.rdd df =

    30.5K10
    领券