首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

围绕Matplotlib上一个更大的圆的圆周旋转?

Matplotlib是一个Python绘图库,用于创建2D图形和绘制数据可视化。它提供了丰富的绘图工具和函数,可以帮助我们创建各种类型的图形。在Matplotlib中,可以通过旋转更大的圆周来实现围绕一个更大圆的圆周旋转。

要实现围绕一个更大的圆周旋转,可以使用Matplotlib的patches模块中的Circle类来创建圆。然后,可以使用FuncAnimation类来创建一个动画,使圆围绕中心点旋转。

以下是一个示例代码,演示如何使用Matplotlib实现围绕一个更大的圆周旋转:

代码语言:txt
复制
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.patches import Circle

fig, ax = plt.subplots()

# 创建一个大圆
circle = Circle((0, 0), 5, edgecolor='black', facecolor='none')
ax.add_patch(circle)

# 创建一个小圆
small_circle = Circle((0, 0), 1, edgecolor='red', facecolor='red')
ax.add_patch(small_circle)

def init():
    return small_circle,

def update(frame):
    # 计算小圆的新位置
    angle = np.deg2rad(frame)  # 将角度转换为弧度
    x = 5 * np.cos(angle)  # 大圆半径为5
    y = 5 * np.sin(angle)
    small_circle.center = (x, y)
    return small_circle,

# 创建动画
ani = FuncAnimation(fig, update, frames=np.linspace(0, 360, 100),
                    init_func=init, blit=True)

# 显示动画
plt.axis('scaled')
plt.show()

在上述代码中,我们首先创建了一个大圆和一个小圆,然后定义了init函数和update函数。init函数用于初始化动画,将小圆添加到图形中。update函数在每一帧更新小圆的位置,通过计算角度来实现围绕大圆旋转。最后,使用FuncAnimation类创建动画,并通过plt.show()显示动画。

以上是一个基本的实现示例。根据具体需求,可以根据Matplotlib的其他功能和函数对动画进行更加丰富的定制和美化。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 云服务器(CVM):提供弹性计算服务,可实例化虚拟机来运行各种应用程序。
  • 对象存储(COS):提供安全、耐久、低成本的云存储服务,可用于存储和访问大规模的非结构化数据。
  • 云数据库MySQL版:基于云服务器和分布式存储系统的高性能MySQL数据库服务。
  • 云原生容器服务(TKE):帮助用户轻松构建、管理和扩展容器化应用程序的托管式Kubernetes容器服务。
  • 云安全中心:提供全面的云安全解决方案,包括威胁检测、安全运营、合规管理等功能。
  • 人工智能计算服务:为开发者提供高性能、低成本的深度学习计算服务。
  • 物联网开发平台:提供全方位的物联网服务,帮助用户构建可靠、安全、可扩展的物联网解决方案。

请注意,上述链接仅供参考,具体产品选择应根据实际需求和使用场景进行评估和选择。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Swift 启动页动画(CAKeyframeAnimation)

前言 项目开发中有个需求,需要给启动页加一个正在加载动画,先上一个效果图。 ? 上图最底层浅色圆圈,我们定义为浅A,转动为深B,可以看到,深B是围绕着浅A圆圈边缘旋转。...剖析 核心难点是如何让深B紧凑沿着浅A边做轨迹运动,为此,我们需要确定一个轨迹C,然后让深B在轨迹C上做圆周运动 image.png 红色圆圈是轨迹C,它圆点就是浅A圆点,然后就是确定半径...,为了让深B沿着浅A边缘运动,所以轨迹C半径应该是(浅A直径 – 深B直径 )/ 2。...image.png 代码 确定轨迹C圆点和半径 ---- let centerX = launchBottomView.center.x let centerY = launchBottomView.center.y...viewDidAppear方法中,否则会导致获取控件大小不准确。

81810

谷歌工程师开发这个试玩网站火了| 附资源

这也是计算机处理声音方式,MP3文件就是这么做。 通常计算机会把声波存储为一系列点,点密集程度决定了舍弃掉多高频率。电脑只存储那些前面低频部分,忽略声音里高频,这就是MP3压缩原理。...从三维角度理解 上面简单介绍了傅立叶变换基本知识。如果你学过一点三角函数知识,就知道正弦波其实和有密切关系。 我们一边画圆,一边让绘制点随着时间前进,就得到在三维空间中螺旋线图像。 ?...叠加“轮子” 既然正弦波可以理解成圆周运动投影,那么傅立叶变换就可以理解成不同圆周运动叠加。 每个轮子转速代表着频率,轮子半径代表着振幅。...当我们从正面观察这个3D图像时,就会看到许多圆圈叠加运动。我们把一个围绕另一个旋转叫做“本轮”(epicycle)。 和前面叠加出方波一样。我们只用几个圆圈就可以很好地逼近简笔画。...如果你想折腾JPEG图像压缩原理部分,还需要安装Jupyter,以及NumPy,PIL,SciPy和Matplotlib

1.3K60
  • 欧拉公式

    世界上最伟大十个公式: 欧拉公式、麦克斯韦方程组、牛顿第二定律、勾股定理、薛定谔方程、质能方程、德布罗意方程组、1+1=2、傅立叶变换、周长公式。...虚数i=√−1 在复平面上画一个单位,单位点可以用三角函数来表示: 复平面上乘法几何意义 欧拉公式与泰勒公式 欧拉公式:eiθ = cosθ + isinθ 欧拉公式理解 我们可以把...eiθ看作通过单位圆周运动来描述单位点,cosθ+isinθ通过复平面的坐标来描述单位点,是同一个点不同描述方式,所以有eiθ=cosθ+isinθ。...为什么eiθ是圆周运动? 推广到复数域: 根据之前对复数乘法描述,乘上(1+i/n)是进行伸缩和旋转运动,n取值不同,伸缩和旋转幅度不同。...我们来看看ei=ei×1如何在圆周上完成1弧度圆周运动: 2i几何含义是什么?

    3.3K30

    Python演示正多边形逼近圆周过程中计算圆周率近似值

    问题描述: 很久以前推送过这样一篇文章,Python使用matplotlib绘制正多边形逼近圆周 很容易得知,当正多边形边数变多时,多边形周长会越来越接近外接周长。...对于圆周,我们知道周长与直径关系,也就是下面的计算公式 ? (1)改写如下 ?...(2)如果使用正多边形模拟圆周的话,把正多边形周长和外接半径带入上面的公式,可以得到圆周近似值,边数越多,计算得到圆周率近似值越接近真实值。 ?...假设我们使用正n边形模拟圆周,上图中O为圆心,A和B是正多边形上两个相邻顶点,这两个点必然在圆周上,OD垂直于AB,那么OD平分角AOB,而角AOB=360/n。...于是有,上图中多边形边长一半,也就是AD,等于半径OA与角AOD正弦值乘积,也就是 ? (3)那么多边形周长、外接直径和上图中角AOD之间关系为 ?

    1.4K30

    如何通过Python实现蒙特卡罗模拟算法

    接下来我们介绍3个简单案例,看一下如何在实际问题中应用这3个步骤进行求解。 案例1: image.png 计算 如何使用蒙特卡罗方法计算圆周率 image.png ?...正方形内部有一个相切,假设圆形半径为 ,那么正方形边长则为 ,因此,圆形和正方形面积之比为: image.png 现在,在正方形内部,随机产生一系列点,计算他们与中心点距离,从而判断是否落在内部...,从而: image.png 即可估算出圆周率 image.png 大小。...d = np.sqrt((x - a) ** 2 + (y - b) ** 2) # 内点个数 res = sum(np.where(d<r, 1, 0)) # 距离小于半径即为内 # pi...waiting_time[i] = last_people_finish_time - arriving_time[i] empty_time[i] = 0 # 到达时间晚于等于上一个结束时间

    2.9K20

    在编程中发现数学之美——使用python和Processing绘制几何图形

    使用rotate旋转对象 在几何中旋转表示将一个物体围绕着一个中心转动。Processing中rotate函数围绕着原点旋转坐标系。它只接受一个参数,这个参数是旋转坐标系角度。角度单位是弧度。...上面的代码表示围绕着原点旋转坐标系20度,这儿原点在窗口左上角。下面的图形首先移动原点到窗口中心,然后旋转20度。 Rotate函数使在上绘制对象变得很容易: 移动原点,到你想要画圆心。...我们要考虑要画之间角度是多少,注意一个圆周是360度,输入下面的代码: def setup(): size(600,600) def draw(): translate(width...三角形围绕着它一个端点旋转,因此三角形外边点组成了一个。你可能也发现了,这个三角形是一个直角三角形,它一个角角度是90度,不是等边三角形。 我们需要绘制等边三角形,也就是说每个边边长相等。...我们将会使相移角度为i×2,这会使每个三角形和它邻居相比差别更大一点。

    6.2K11

    三种 Loading 制作方案

    所以我们可以通过控制元素边框和内容区大小,将元素内容区域作为内圆,将元素边框区域作为外,从而绘制出一个圆环。...截图区域中,绘制圆心正好在截图区域中心,所以截图区域四周边框与绘制之间有5px距离,而半径为20px,所以比例为1:4,现在将svg显示区域变为60px,所以也需要将截图区域等比例放大并占满整个...: 0; /*前面1/126显示实线,后面125显示空白*/ } 从圆环最右边作为起点绘制1个像素距离实线,接下来绘制126像素虚线(空白),因为圆周长为126,所以剩余部分全部为空白,如图所示,...为了让Loading动画更加生动细腻,我们还可以给svg标签也加上一个旋转动画,如: .loading-svg { width: 50px; /*设置svg显示区域大小*/ height...: 50px; animation: loading-rotate 1.5s infinite ease-in-out; /*给svg也加上一个旋转动画*/ } @keyframes loading-rotate

    3.2K10

    基础渲染系列(一)图形学基石——矩阵

    围绕该轴旋转点就像旋转一个轮子。 由于Unity使用左手坐标系,因此在Z轴正方向观看时,正向旋转会使车轮逆时针旋转。 ? (绕着Z轴2D旋转) 一个点旋转时会发生什么变化呢?...最简单考虑点位于半径为一个单位(单位)上点。 最直接点对应于X和Y轴。 如果将这些点旋转90°,则总是以0、1或-1结束。 ?...使用单位时,弧度与您沿其圆周行进距离匹配。 由于圆周长度等于半径2π倍,因此1个弧度等于π/ 180度。 在这里你还可以看到π定义。 它是周长与其直径之比。...这意味着我们首先缩放,然后旋转,最后重新定位,这也是UnityTransform组件所做。 当然,目前仅支持围绕Z旋转。 稍后我们将处理其他两个轴。 ?...(所有的三个转换效果) 3 完全体旋转 现在,我们只能绕Z轴旋转。 为了提供与Unity变换组件相同旋转支持,我们还必须启用围绕X和Y轴旋转

    4.9K23

    自动驾驶运动规划-Dubins曲线

    根据向量点乘数学定义: 因此: 等于向量 与法向量n夹角余弦。为了方便书写,定义一个常量 。等式17)中只有n是未知数。 5)将向量 旋转角度C就得到向量n。...假设 ,根据向量旋转数学定义: 6)计算出n之后,就可以很方便计算出外切线切点 和 。从C1圆心出发,沿着向量n方向,距离为 位置即为切点 , 亦然。...3.2 计算CSC类型行驶曲线 RSR、LSL、RSL、LSR是CSC类型行驶曲线,该类型曲线首先计算两个切点,然后车辆沿着最小转弯半径构成圆周行驶到第一个切点,然后直行到第二个切点,...然后就可以得到车辆行驶轨迹,该轨迹分为三段:start到 圆周弧; 和 直线距离; 到Goal圆周弧。至此我们得到了RSR行驶曲线。...按照同样过程可以计算得到。然后就可以得到start到圆周弧;到圆周弧;到Goal圆周三段轨迹组成车辆行驶曲线。

    93630

    弧度和角度转换_角度与弧度换算表格

    就像“米”和“市尺”是度量长度大小两种不同单位一样。 在flash里规定:在旋转角度(rotation)里角,以“度”为单位;而在三角函数里角要以“弧度”为单位。...这个规定是我们首先要记住!!!比如:rotation2--是旋转“2度”;sin(π/2)--是大小为“π/2弧度”正弦。...当这段弧长正好等于圆周360分之中一个时,两条射线夹角大小为1度。(如图1) 那么,弧度又是如何定义呢?...弧度定义是:两条射线从圆心向圆周射出,形成一个夹角和夹角正对一段弧。当这段弧长正好等于半径时,两条射线夹角大小为1弧度。(如图2) 比較一下,度和弧度这两个定义非常类似。...它们关系可用下式表示和计算: 角(弧度)=弧长/半径 周长是半径 2π倍,所以一个周角(360度)是 2π弧度。

    1K20

    Python 伪随机数:random库使用

    random库采用梅森旋转算法(Mersenne twister)生成伪随机数序列,可用于除随机性要求更高加解密算法外大多数工程应用。...---- 2.random库应用: 计算 (圆周率)是一个无理数,即无限不循环小数。精确求解圆周率 是几何学、物理学和很多工程学科关键。...应用蒙特卡罗方法求解 基本步骤如下: 随机向单位正方形和结构,抛洒大量“飞镖”点 计算每个点到圆心距离从而判断该点在内或者外 用点数除以总点数就是 /4值。...利用 蒙特卡罗(Monte Carlo)方法 计算圆周值: import random dot = 0 dots = int(input('请输入要抛洒飞镖数:')) for i...:{pi}') 随着抛洒飞镖数量增加,计算出圆周率值也更加精确。

    1.2K20

    CORDIC算法详解(一)-CORDIC 算法之圆周系统之旋转模式

    CORDIC算法详解(一)- CORDIC 算法之圆周系统之旋转模式( Rotation Mode ) 文章目录 CORDIC算法详解(一)- CORDIC 算法之圆周系统之旋转模式( Rotation...Mode ) 1 CORDIC 算法之圆周系统及其数学应用 1.1 圆周系统之旋转模式( Rotation Mode ) 1.2 思考 1.3 CORDIC算法应用 1.3.1 目标旋转角度正、 余弦函数值...---- 1 CORDIC 算法之圆周系统及其数学应用   在圆周系统下, CORDIC 算法解决了三角函数计算问题,其中圆周系统又分旋转模式和向量模式。...1.1 圆周系统之旋转模式( Rotation Mode )   如图 3.69 所示, 在单位上, 向量 OP与X轴正半轴夹角为 α , 故P点坐标可表示为式(3.91): ? ?   ...z迭代过程是将z收敛于零过程,也正是将θ分解为一系列θi过程, 故zi可认为是第i次旋转剩余角度。至此 ,CORDIC 算法之圆周系统旋转模式迭代过程可表示为: ?

    4.4K42

    π 美丽

    是因为pi潜伏于每一个中吗? ? 每一个旋转都是π表达式 逻辑上原因似乎很隐晦;这是因为pi是产生随机数一个很好来源。...因此,富有传奇色彩阿基米德在两千多年前将一个定义为一个有着非常多条边正多边形。 ? 刻在单位多边形 他定义很有用,因为很难精确测量一个曲面。他找到了求圆周方法。...首先,他画了一个正方形,它角接触到圆周,并找到了内接正方形周长。其次。他画了另一个正方形,它边也接触到圆周,并找到外接正方形周长。他得出结论是,圆周长必须介于这两个正方形周长之间。...然而,使用这种方法,当他使用正方形时,这两个值之间差异非常大。所以,他画了五边形来观察圆周上下限。他当时得到一个小区间。之后,他不断增加他在内外绘制多边形数量。...你只需画一个半径为1,然后围绕画一个正方形。正方形面积必须是4,因为直径是2。现在,如果你拿着铅笔闭上眼睛,在纸上多次画上随机点,最终你点落在百分比将接近π/4。

    1K10

    CORDIC算法详解(二)-CORDIC 算法之圆周系统之向量模式

    ---- 整个系列分别从圆周系统、 线性系统和双曲系统及硬件实现进行分析,如下: CORDIC算法详解(一)- CORDIC 算法之圆周系统之旋转模式( Rotation Mode ) CORDIC算法详解...为了达到这一目标, 每次迭代通过判断 yi 符号确定旋转方向, 最终使初始向量旋转至 X 轴正半轴, 这一过程也使得每次微旋转旋转角度累加和存储在变量 z 中。...旋转模式和向量模式相同之处在于: 两者都是微旋转, 也都是伪旋转。 前者使得向量模式下初始向量必须落入第一或第四象限; 后者使得向量模长发生变化需要补偿。...这里并不要求(x0 , y0 )在单位上。 ?   同样地, 根据式( 3.111 ), 令x0 = 1 , 可获取反正切函数值, 如图 3.81 所示。...最终xn输出为极径,但扩大为初始向量模长An,对zn进行一定处理后即为极角。 3 CORDIC 算法之圆周系统之向量模式及圆周模式应用   CORDIC圆角系统算法模型如MATLAB代码如下。

    3K11

    Python教程之粒子运动轨迹动态绘图

    今天我们来讲一下Python中动态绘图库--matplotlib.animation,以粒子运动轨迹为例来说明如何绘制动态图。   假设按照圆周运动,如下图所示: ?...image-20200829214510346 为了模拟这个运动,我们需要如下信息:粒子起始位置、速度和旋转方向。因此定义一个通用Particle类,用于存储粒子位置及角速度。...ang_vel): self.x = x self.y = y self.ang_vel = ang_vel   对于特定粒子,经过时间t后,它将到达圆周下一个位置...我们可以这样近似计算圆周轨迹:将时间段t分成一系列很小时间段dt,在这些很小时段内,粒子沿圆周切线移动。这样就近似模拟了圆周运动。...粒子   可能很多同学看了上面这个例子,也不是很清楚animation函数用法,下面我们再举个简单例子: import numpy as np import matplotlib import matplotlib.pyplot

    2.5K30

    leetcode478. Generate Random Point in a Circle

    假设现在已知圆心x和y坐标,以及该半径radius。要求写一个随机点生成器,要求该生成器生成点必须在内,且每一个点被生成概率为相等。规定圆周点也属于内。...思路1:Rejection Sampling 该思路很简单,即取能够容下该最小正方形,并且随机生成该正方形内点。如果点不在内,则继续重新生成。...但是通过这种方式生成随机点会明显在靠近圆心位置密度更大,如下图所示(图片来源于网络): ? 究其原因在于,从圆心向圆周方向半径扩展出去,单位长度所构成圆环面积并非相等。...假设将圆周拆分为等分3部分,则最内圈面积为 ? ,中圈面积为 ? =3A,同理外圈面积为5A。如果按照半径上每一个点都是等概率生成的话,会发现内圈因为面积更小,导致点密度更大。...概率密度函数是指某个随机数生成器生成数字在某个点附近概率值。

    43720

    三维数学(2)-三角函数

    度量方式 角度Degree与弧度Radian 两条射线从圆心向圆周射出,形成一个夹角和夹角正对一段弧。当弧长等于圆周360分之一时,夹角为一度。弧长等于半径时,夹角为1弧度。...三角函数 建立了直角三角形中角与边长比值关系。 可用于根据一边一角,去求另一边。...v 根据三角函数求出坐标v相对于cube在z轴和x轴偏移量,然后用在cube坐标的基础上,x加上x轴偏移量,z加上z轴偏移量得出坐标就是v坐标了。...但是这样求得坐标,当cube旋转时v坐标是不会变,如果需要让v坐标会随着cube旋转而改变,可以用cube.transform.transformPoint(x偏移量,0,z偏移量)将v相对cube...坐标转为世界坐标,这样当cube旋转时,v坐标也会跟着旋转了。

    1.1K20

    蒙特卡洛计算PI(距离公式)+蒙特卡洛计算定积分

    蒙特卡洛简单计算PI值: import random import math # import matplotlib M = input('请输入一个较大整数') N = 0 # 累计落随机点个数...N = N+1 # 对落在点进行累加 pi = 4*N/int(M) # 这里是四分之一,乘以4还原 print(pi) 正方形内部有一个相切,它们面积之比是...现在,在这个正方形内部,随机产生n个点,计算它们与中心点距离,并且判断是否落在内部。...若这些点均匀分布,则圆周率 pi = 4*N/int(M), 其中count表示落到内投点数 n:表示总投点数。...import random def cal(): """经典用蒙特卡洛方法求π值""" n = 100000000 r = 1.0 # 假设半径为1 a, b

    57740

    科学瞎想系列之一〇一 NVH那些事(7)

    节也过了,假也完了,该玩都玩了,本瞎想系列文章也进入了第二个一百期,这是一个新起点。...本期继续我们NVH,前面的几篇长篇大论许多宝宝都反映太长了,今天我们就来篇短,说说气隙偏心原因引起力波特点。 因制造公差和长时间运行磨损,都会导致转子外和定子内圆产生偏心。...如图1所示,偏心有两种情况:一种是静偏心,是定转子不同心造成,通常运行磨损、制造和装配精度不够,往往会造成静偏心;另一种是动偏心,主要是转子外与轴不同心或转子不造成,轴和定子内圆还是同心,这种情况下转子旋转时...δ(θ,t)=δ0-δε•cos(θ-ωε•t) ⑴ 式中:δ0为均匀气隙长度;δε为偏心距;θ气隙为圆周位置角(机械角度);ωε为转子旋转时偏心气隙旋转角速度。...静偏心时: ωε=0 动偏心时: ωε=Ω2=ω1(1-s)/p 式中:Ω2为转子旋转角频率,s为转差率(对同步电机s=0),ω1为同步角频率;p

    1.2K20
    领券