首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从其他作为字典的值的pandas dataframe追加pandas dataframe

从其他作为字典值的Pandas DataFrame追加Pandas DataFrame时,可以使用append()方法将源DataFrame的数据追加到目标DataFrame中。

下面是一个完善且全面的答案:

当我们想要将一个作为字典值的Pandas DataFrame追加到另一个Pandas DataFrame中时,可以使用append()方法来实现。append()方法将源DataFrame的数据追加到目标DataFrame的末尾,形成一个新的DataFrame。

具体实现步骤如下:

  1. 创建一个空的目标DataFrame,用于接收源DataFrame的数据。
  2. 遍历源DataFrame中的每一个字典值,将其转换为DataFrame,并使用append()方法追加到目标DataFrame中。
  3. 最后,得到的目标DataFrame将包含源DataFrame中所有字典值的数据。

下面是示例代码:

代码语言:txt
复制
import pandas as pd

# 源DataFrame作为字典值
source_data = {
    'data1': pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}),
    'data2': pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
}

# 创建空的目标DataFrame
target_data = pd.DataFrame()

# 遍历源DataFrame的字典值
for value in source_data.values():
    # 将字典值转换为DataFrame,并追加到目标DataFrame中
    target_data = target_data.append(value)

# 打印目标DataFrame
print(target_data)

该代码将输出如下结果:

代码语言:txt
复制
   A   B
0  1   4
1  2   5
2  3   6
0  7  10
1  8  11
2  9  12

在这个例子中,source_data是一个包含两个作为字典值的Pandas DataFrame的字典。我们使用append()方法将这两个DataFrame的数据追加到target_data中,最后得到了一个包含了所有数据的新DataFrame。

需要注意的是,append()方法返回一个新的DataFrame,所以在追加数据时要将返回值重新赋给目标DataFrame。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

数据分析-Pandas DataFrame连接与追加

微信公众号:yale记 关注可了解更多教程问题或建议,请公众号留言。 背景介绍 今天我们学习多个DataFrame之间连接和追加操作,在合并DataFrame时,您可能会考虑很多目标。...例如,您可能想要“追加”它们,您可能会添加到最后,基本上添加更多行。或者您可能希望添加更多列,我们现在将开始介绍两种主要合并DataFrame方式:连接和追加。 ? 入门示例 ? ? ? ? ?...代码片段: # ## Dataframe连接和追加数据 # In[23]: import pandas as pd # In[24]: df1 = pd.DataFrame({'num':[60,20,80,90...([df1,df2,df3],sort=False) concat_df_all # ## 使用append()追加dataframe # In[29]: df4 = df1.append(df2) df4...# In[30]: df5 = df1.append(df3,sort=False) df5 # ## 使用append()追加Series # In[31]: s = pd.Series([77,4,66

13.7K31

pandas DataFrame创建方法

pandas DataFrame增删查改总结系列文章: pandas DaFrame创建方法 pandas DataFrame查询方法 pandas DataFrame行或列删除方法 pandas...DataFrame修改方法 在pandas里,DataFrame是最经常用数据结构,这里总结生成和添加数据方法: ①、把其他格式数据整理到DataFrame中; ②在已有的DataFrame...字典类型读取到DataFrame(dict to DataFrame) 假如我们在做实验时候得到数据是dict类型,为了方便之后数据统计和计算,我们想把它转换为DataFrame,存在很多写法,这里简单介绍常用几种...2. csv文件构建DataFrame(csv to DataFrame) 我们实验时候数据一般比较大,而csv文件是文本格式数据,占用更少存储,所以一般数据来源是csv文件,csv文件中如何构建...[6]= new_line 但是十分注意是,这样实际是改操作,如果loc[index]中index已经存在,则新会覆盖之前

2.6K20
  • pandas DataFrame运算实现

    ] 23 2018-02-27 True 2018-02-26 False 2018-02-23 False 2018-02-22 False 2018-02-14 False # 逻辑判断结果可以作为筛选依据...以上这些函数可以对series和dataframe操作 这里我们按照时间从前往后来进行累计 排序 # 排序之后,进行累计求和 data = data.sort_index() 对p_change进行求和...4 自定义运算 apply(func, axis=0) func:自定义函数 axis=0:默认是列,axis=1为行进行运算 定义一个对列,最大-最小函数 data[['open', 'close...']].apply(lambda x: x.max() - x.min(), axis=0) open 22.74 close 22.85 dtype: float64 到此这篇关于pandas DataFrame...运算实现文章就介绍到这了,更多相关pandas DataFrame运算内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    1.6K41

    (六)Python:PandasDataFrame

    目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与 基本操作 统计功能  ---- 基本特征 一个表格型数据结构 含有一组有序列(类似于index) 大致可看成共享同一个index...DataFrame也能自动生成行索引,索引0开始,代码如下所示: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc']...                我们可以通过一些基本方法来查看DataFrame行索引、列索引和,代码如下所示: import pandas as pd import numpy as np data...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上数据,drop()方法返回一个新对象,不会直接修改原始数据。...对象修改和删除还有很多方法,在此不一一列举,有兴趣同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大统计功能,它有大量函数可以使用

    3.8K20

    合并PandasDataFrame方法汇总

    ---- Pandas是数据分析、机器学习等常用工具,其中DataFrame又是最常用数据类型,对它操作,不得不熟练。...在《跟老齐学Python:数据分析》一书中,对DataFrame对象各种常用操作都有详细介绍。本文根据书中介绍内容,并参考其他文献,专门汇总了合并操作各种方法。...Pandas提供好几种方法和函数来实现合并DataFrame操作,一般操作结果是创建一个新DataFrame,而对原始数据没有任何影响。...这种追加操作,比较适合于将一个DataFrame每行合并到另外一个DataFrame尾部,即得到一个新DataFrame,它包含2个DataFrames所有的行,而不是在它们列上匹配数据。...方法5:combine_first()和update() 假设有一个DataFrame,但是它存在缺失数据,希望能够另一个DataFrame中讲丢失数据填充进来。

    5.7K10

    Pandas高级教程之:Dataframe合并

    简介 Pandas提供了很多合并Series和Dataframe强大功能,通过这些功能可以方便进行数据分析。本文将会详细讲解如何使用Pandas来合并Series和Dataframe。...axis指定连接轴。 join : {‘inner’, ‘outer’}, 连接方式,怎么处理其他index,outer表示合并,inner表示交集。...ignore_index: 忽略原本index,使用0,1,… n-1来代替。 copy:是否进行拷贝。 keys:指定最外层多层次结构index。...index,然后将他们放在frames中构成了一个DFlist,将其作为参数传入concat就可以进行DF合并。...df1.combine_first(df2) 或者使用update: In [134]: df1.update(df2) 本文已收录于 http://www.flydean.com/04-python-pandas-merge

    5.2K00

    Pandas高级教程之:Dataframe合并

    简介 Pandas提供了很多合并Series和Dataframe强大功能,通过这些功能可以方便进行数据分析。本文将会详细讲解如何使用Pandas来合并Series和Dataframe。...axis指定连接轴。 join : {‘inner’, ‘outer’}, 连接方式,怎么处理其他index,outer表示合并,inner表示交集。...ignore_index: 忽略原本index,使用0,1,… n-1来代替。 copy:是否进行拷贝。 keys:指定最外层多层次结构index。...index,然后将他们放在frames中构成了一个DFlist,将其作为参数传入concat就可以进行DF合并。...数据,这时候可以使用combine_first: In [131]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],

    2.3K30

    pandas DataFrame 数据选取,修改,切片实现

    在刚开始使用pandas DataFrame时候,对于数据选取,修改和切片经常困惑,这里总结了一些常用操作。...做例子 import numpy as np import pandas as pd df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa...:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时第0行开始,后数就是-1行开始,毕竟没有-0) 2. loc,在知道列名字情况下,df.loc[index...接受有返回函数作为参数,但要保证函数返回是整数/整数list,布尔/布尔list 如果直接运行 df.iloc[df[‘one’] 10] 则会报错 NotImplementedError: iLocation...到此这篇关于pandas DataFrame 数据选取,修改,切片实现文章就介绍到这了,更多相关pandas 数据选取,修改,切片内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    8.7K20

    pandas | DataFrame排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗架构师。今天说一说pandas | DataFrame排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题第六篇文章,我们来聊聊DataFrame排序与汇总运算。...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据排序。我们先来看看Series当中排序方法。...method合法参数并不止first这一种,还有一些其他稍微冷门一些用法,我们一并列出。 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体排名。...另一个我个人觉得很好用方法是descirbe,可以返回DataFrame当中整体信息。比如每一列均值、样本数量、标准差、最小、最大等等。

    3.9K20

    pandas | DataFrame排序与汇总方法

    今天是pandas数据处理专题第六篇文章,我们来聊聊DataFrame排序与汇总运算。...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据排序。我们先来看看Series当中排序方法。...我们还可以传入ascending这个参数,用来指定我们想要排序顺序是正序还是倒序。 ? 排序 DataFrame排序有所不同,我们不能对行进行排序,只能针对列。...method合法参数并不止first这一种,还有一些其他稍微冷门一些用法,我们一并列出。 ? 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体排名。...另一个我个人觉得很好用方法是descirbe,可以返回DataFrame当中整体信息。比如每一列均值、样本数量、标准差、最小、最大等等。

    4.6K50

    pandas dataframeexplode函数用法详解

    在使用 pandas 进行数据分析过程中,我们常常会遇到将一行数据展开成多行需求,多么希望能有一个类似于 hive sql 中 explode 函数。 这个函数如下: Code # !.../usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode...(df, "listcol") Description 将 dataframe 按照某一指定列进行展开,使得原来每一行展开成一行或多行。...( 注:该列可迭代, 例如list, tuple, set) 补充知识:Pandas列中字典/列表拆分为单独列 我就废话不多说了,大家还是直接看代码吧 [1] df Station ID Pollutants...dataframeexplode函数用法详解就是小编分享给大家全部内容了,希望能给大家一个参考。

    3.9K30

    Pandas创建DataFrame对象几种常用方法

    DataFramepandas常用数据类型之一,表示带标签可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象用法。...pandas as pd 接下来就可以通过多种不同方式来创建DataFrame对象了,为了避免排版混乱影响阅读,直接在我制作PPT上进行截图。...生成后面创建DataFrame对象时用到日期时间索引: ? 创建DataFrame对象,索引为2013年每个月最后一天,列名分别是A、B、C、D,数据为12行4列随机数。 ?...根据字典来创建DataFrame对象,字典“键”作为DataFrame对象列名,其中B列数据是使用pandasdate_range()函数生成日期时间,C列数据来自于使用pandasSeries...除此之外,还可以使用pandasread_excel()和read_csv()函数Excel文件和CSV文件中读取数据并创建DateFrame对象,后面会单独进行介绍。

    3.6K80
    领券