首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将pandas dataframe设置为不在其他dataframe中的值

,可以通过以下步骤实现:

  1. 首先,我们需要有两个dataframe,一个是要设置值的目标dataframe,另一个是包含其他值的参考dataframe。
  2. 使用pandas的isin()函数,可以判断目标dataframe中的每个元素是否在参考dataframe中存在。该函数返回一个布尔类型的dataframe,其中True表示目标元素在参考dataframe中存在,False表示目标元素在参考dataframe中不存在。
  3. 使用布尔索引,可以根据isin()函数的结果,将目标dataframe中对应位置的元素设置为我们想要的值。可以使用loc函数来实现。

下面是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建目标dataframe
df_target = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]})

# 创建参考dataframe
df_reference = pd.DataFrame({'A': [2, 4, 6, 8, 10], 'B': [12, 14, 16, 18, 20]})

# 使用isin()函数判断目标dataframe中的元素是否在参考dataframe中存在
isin_result = df_target.isin(df_reference)

# 使用布尔索引将目标dataframe中不在参考dataframe中的元素设置为新值
df_target.loc[~isin_result] = -1

print(df_target)

输出结果如下:

代码语言:txt
复制
   A   B
0  1  -1
1 -1  -1
2  3  -1
3 -1  -1
4  5  -1

在这个示例中,我们将目标dataframe中不在参考dataframe中的元素设置为-1。你可以根据实际需求设置不同的值。

推荐的腾讯云相关产品:腾讯云数据库(TencentDB),提供了多种数据库产品,包括关系型数据库、NoSQL数据库等,可以满足不同场景下的数据存储需求。具体产品介绍和链接地址可以参考腾讯云数据库官方文档:腾讯云数据库

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

(六)Python:PandasDataFrame

, 'pay': [4000, 5000, 6000]} # 以name和pay列索引,创建DataFrame frame = pd.DataFrame(data) #自定义行索引 print(frame...                我们可以通过一些基本方法来查看DataFrame行索引、列索引和,代码如下所示: import pandas as pd import numpy as np data...,但这种方式是直接对原始数据操作,不是很安全,pandas 可利用 drop()方法删除指定轴上数据,drop()方法返回一个新对象,不会直接修改原始数据。...'pay': 5000, 'tax': 0.05} print(aDF) print("===============================") aDF['tax'] = 0.03 # 一列修改为相同...xiaohong  5000  0.05 3   xiaolan  6000  0.10 5     Liuxi  5000  0.05 =============================== 一列修改为相同

3.8K20

pandas | DataFrame排序与汇总方法

今天是pandas数据处理专题第六篇文章,我们来聊聊DataFrame排序与汇总运算。...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据排序。我们先来看看Series当中排序方法。...Series当中排序方法有两个,一个是sort_index,顾名思义根据Series索引对这些进行排序。另一个是sort_values,根据Series来排序。...method合法参数并不止first这一种,还有一些其他稍微冷门一些用法,我们一并列出。 ? 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体排名。...另一个我个人觉得很好用方法是descirbe,可以返回DataFrame当中整体信息。比如每一列均值、样本数量、标准差、最小、最大等等。

4.6K50
  • pandas | DataFrame排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗架构师。今天说一说pandas | DataFrame排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题第六篇文章,我们来聊聊DataFrame排序与汇总运算。...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据排序。我们先来看看Series当中排序方法。...Series当中排序方法有两个,一个是sort_index,顾名思义根据Series索引对这些进行排序。另一个是sort_values,根据Series来排序。...method合法参数并不止first这一种,还有一些其他稍微冷门一些用法,我们一并列出。 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体排名。

    3.9K20

    pandas dataframe explode函数用法详解

    在使用 pandas 进行数据分析过程,我们常常会遇到一行数据展开成多行需求,多么希望能有一个类似于 hive sql explode 函数。 这个函数如下: Code # !.../usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode...(df, "listcol") Description dataframe 按照某一指定列进行展开,使得原来每一行展开成一行或多行。...( 注:该列可迭代, 例如list, tuple, set) 补充知识:Pandas字典/列表拆分为单独列 我就废话不多说了,大家还是直接看代码吧 [1] df Station ID Pollutants...dataframe explode函数用法详解就是小编分享给大家全部内容了,希望能给大家一个参考。

    3.9K30

    Pandas DataFrame 自连接和交叉连接

    有很多种不同种类 JOINS操作,并且pandas 也提供了这些方式实现来轻松组合 Series 或 DataFrame。...SQL语句提供了很多种JOINS 类型: 内连接 外连接 全连接 自连接 交叉连接 在本文重点介绍自连接和交叉连接以及如何在 Pandas DataFrame 中进行操作。...自连接 顾名思义,自连接是 DataFrame 连接到自己连接。也就是说连接左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 行。...注:如果我们想排除Regina Philangi ,可以使用内连接"how = 'inner'" 我们也可以使用 pandas.merge () 函数在 Pandas 执行自连接,如下所示。...总结 在本文中,介绍了如何在Pandas中使用连接操作,以及它们是如何在 Pandas DataFrame 执行。这是一篇非常简单入门文章,希望在你处理数据时候有所帮助。

    4.2K20

    python下PandasDataFrame基本操作(二),DataFrame、dict、array构造简析

    DataFrame简介:   DataFrame是一个表格型数据结构,它含有一组有序列,每列可以是不同类型(数值、字符串、布尔等)。...跟其他类似的数据结构相比(如Rdata.frame),DataFrame面向行和面向列操作基本上是平衡。...其实,DataFrame数据是以一个或多个二维块存放(而不是列表、字典或别的一维数据结构)。..."b" : b}#列表a,b转换成字典 data=DataFrame(c)#字典转换成为数据框 print(data) 输出结果 a b 0 1 5 1 2 6 2 3...7 3 4 8 第二种:包含不同子列表列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同子列表

    4.4K30

    设置jupyterDataFrame显示限制方式

    jupyter显示DataFrame过长时会自动换行(print()显示方式)或自动省略(单元格最后一行直接显示),在一些情况下看上去不是很方便,可调节显示参数如下: import pandas as...pd pd.set_option('display.width', 500) #设置整体宽度 pd.set_option('display.height', 500) #设置整体高度 pd.set_option...('display.max_rows',100) #设置最大行数 pd.set_option('display.max_columns', 100) #设置最大列数 补充知识:pandas关于DataFrame...('display.max_rows', None) #设置value显示长度100,默认为50 pd.set_option('max_colwidth',100) 以上这篇设置jupyterDataFrame...显示限制方式就是小编分享给大家全部内容了,希望能给大家一个参考。

    4.6K10

    pandas | 详解DataFrameapply与applymap方法

    今天是pandas数据处理专题第5篇文章,我们来聊聊pandas一些高级运算。...今天这篇文章我们来聊聊dataframe广播机制,以及apply函数使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy专题文章当中曾经介绍过广播。...函数与映射 pandas另外一个优点是兼容了numpy当中一些运算方法和函数,使得我们也可以一些numpy当中函数运用在DataFrame上,这样就大大拓展了使用方法以及运算方法。...比如我们想要计算出DataFrame当中每一列最大,我们可以这样写: ? 这个匿名函数当中x其实是一个Series,那这里max就是Series自带max方法。...最后我们来介绍一下applymap,它是元素级map,我们可以用它来操作DataFrame每一个元素。比如我们可以用它来转换DataFrame当中数据格式。 ?

    3K20

    python下PandasDataFrame基本操作,基本函数整理

    参考链接: Pandas DataFrame转换函数 pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】pandas方方面面都有了一个权威简明入门级介绍...,但在实际使用过程,我发现书中内容还只是冰山一角。...)以布尔方式返回空DataFrame.notnull()以布尔方式返回非空    索引和迭代    方法描述DataFrame.head([n])返回前n行数据DataFrame.at快速标签常量访问器...时间序列    方法描述DataFrame.asfreq(freq[, method, how, …])时间序列转换为特定频次DataFrame.asof(where[, subset])The last...转换为其他格式    方法描述DataFrame.from_csv(path[, header, sep, …])Read CSV file (DEPRECATED, please use pandas.read_csv

    2.5K00

    python下PandasDataFrame基本操作(一),基本函数整理

    pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】pandas方方面面都有了一个权威简明入门级介绍,但在实际使用过程,我发现书中内容还只是冰山一角...谈到pandas数据行更新、表合并等操作,一般用到方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用场合与用途。...() 以布尔方式返回空 DataFrame.notnull() 以布尔方式返回非空 索引和迭代 方法 描述 DataFrame.head([n]) 返回前n行数据 DataFrame.at 快速标签常量访问器...时间序列 方法 描述 DataFrame.asfreq(freq[, method, how, …]) 时间序列转换为特定频次 DataFrame.asof(where[, subset]) The...转换为其他格式 方法 描述 DataFrame.from_csv(path[, header, sep, …]) Read CSV file (DEPRECATED, please use pandas.read_csv

    11.1K80

    Pandas数据处理4、DataFrame记录重复出现次数(是总数不是每个数量)

    Pandas数据处理4、DataFrame记录重复出现次数(是总数不是每个数量) ---- 目录 Pandas数据处理4、DataFrame记录重复出现次数(是总数不是每个数量) 前言...环境 基础函数使用 DataFrame记录每个出现次数 重复数量 重复 打印重复 总结 ---- 前言         这个女娃娃是否有一种初恋感觉呢,但是她很明显不是一个真正意义存在图片...,我们在模型训练可以看到基本上到处都存在着Pandas处理,在最基础OpenCV也会有很多Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好操作图片数组真的是相当麻烦...,可以在很多AI大佬文章中发现都有这个Pandas文章,每个人写法都不同,但是都是适合自己理解方案,我是用于教学,故而我相信我文章更适合新晋程序员们学习,期望能节约大家事件从而更好精力放到真正去实现某种功能上去...版本:1.4.4 基础函数使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame

    2.4K30

    pythonpandasDataFrame对行和列操作使用方法示例

    pandasDataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w'列,使用类字典属性,返回是Series类型 data.w #选择表格'w'列,使用点属性,返回是Series类型 data[['w']] #选择表格'w'列,返回DataFrame...#利用index进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...下面是简单例子使用验证: import pandas as pd from pandas import Series, DataFrame import numpy as np data = DataFrame...github地址 到此这篇关于pythonpandasDataFrame对行和列操作使用方法示例文章就介绍到这了,更多相关pandasDataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30
    领券