
高级难度的IO竞赛题目是竞赛中的顶级挑战,也是区分顶尖选手的关键。2025年的高级难度(难度系数8-9)题目综合考察了选手的算法设计、数学建模、问题分析和代码实现能力。本文将深入解析2025年高级难度的IO竞赛题目,帮助选手们突破极限,冲击更高的竞赛成绩。
难度进阶路径: 入门(1-3) → 基础(4-5) → 中级(6-7) → 高级(8-9) → 专家(10)难度系数 | 考察重点 | 核心知识点 | 学习目标 |
|---|---|---|---|
8-9 | 算法设计、数学建模、问题分析 | 高级图论、高级动态规划、高级数论、组合数学 | 掌握最优化算法设计,具备解决复杂问题的能力 |
目录
├── 第一章:2025年IO竞赛高级难度题目概述
├── 第二章:难度系数8题目解析(8题)
├── 第三章:难度系数9题目解析(8题)
├── 第四章:高级难度题目解题策略
└── 第五章:顶尖选手的训练方法根据2025年NOI修订版大纲,高级难度(NOI级别)的知识点难度系数为8-9,这一阶段的题目已经接近或达到国际信息学奥林匹克竞赛(IOI)的水平。
高级难度题目类型分布:
高级动态规划 → 20%
高级图论 → 20%
高级数论 → 15%
组合数学 → 15%
计算几何 → 10%
字符串算法 → 10%
其他 → 10%高级难度题目的特点:
难度系数8的题目是高级难度的基础,开始涉及最优化算法设计和复杂的数学建模。以下是8道典型的难度系数8题目解析。
题目描述:给定一个长度为n的数组,求将其分成m段的最小代价。每段的代价为该段元素的和的平方。
解题思路:这是一个典型的斜率优化动态规划问题。设dp[i][j]表示将前i个元素分成j段的最小代价。状态转移方程为:dp[i][j] = min(dp[k][j-1] + (sum[i] - sum[k])2),其中k从j-1到i-1。通过斜率优化,可以将时间复杂度从O(n2m)优化到O(nm)。
C++代码实现:
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
ll min_cost(vector<ll>& sum, int n, int m) {
vector<vector<ll>> dp(n + 1, vector<ll>(m + 1, INF));
for (int i = 0; i <= n; i++) {
dp[i][1] = sum[i] * sum[i];
}
for (int j = 2; j <= m; j++) {
vector<int> q(n + 1);
int head = 0, tail = 0;
q[tail++] = j - 1;
for (int i = j; i <= n; i++) {
// 计算最佳的k值
while (head + 1 < tail) {
int k1 = q[head], k2 = q[head + 1];
ll val1 = dp[k1][j - 1] + sum[k1] * sum[k1];
ll val2 = dp[k2][j - 1] + sum[k2] * sum[k2];
if (val1 + 2 * sum[i] * sum[k1] >= val2 + 2 * sum[i] * sum[k2]) {
head++;
} else {
break;
}
}
int k = q[head];
dp[i][j] = dp[k][j - 1] + (sum[i] - sum[k]) * (sum[i] - sum[k]);
// 维护队列的单调性
while (head + 1 < tail) {
int k1 = q[tail - 2], k2 = q[tail - 1], k3 = i;
ll val1 = dp[k1][j - 1] + sum[k1] * sum[k1];
ll val2 = dp[k2][j - 1] + sum[k2] * sum[k2];
ll val3 = dp[k3][j - 1] + sum[k3] * sum[k3];
if ((val2 - val1) * (sum[k3] - sum[k2]) >= (val3 - val2) * (sum[k2] - sum[k1])) {
tail--;
} else {
break;
}
}
q[tail++] = i;
}
}
return dp[n][m];
}
int main() {
int n, m;
cin >> n >> m;
vector<ll> a(n);
vector<ll> sum(n + 1, 0);
for (int i = 0; i < n; i++) {
cin >> a[i];
sum[i + 1] = sum[i] + a[i];
}
cout << min_cost(sum, n, m) << endl;
return 0;
}题目描述:给定一个有向图,判断是否存在哈密尔顿路径。
解题思路:哈密尔顿路径是指经过图中所有顶点一次且仅一次的路径。可以使用状态压缩动态规划来解决这个问题。设dp[mask][u]表示已经访问过的顶点集合为mask,当前位于顶点u时是否存在哈密尔顿路径。
C++代码实现:
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
bool has_hamiltonian_path(int n, vector<vector<int>>& graph) {
vector<vector<bool>> dp(1 << n, vector<bool>(n, false));
// 初始化,单个顶点的路径
for (int u = 0; u < n; u++) {
dp[1 << u][u] = true;
}
// 枚举所有状态
for (int mask = 1; mask < (1 << n); mask++) {
for (int u = 0; u < n; u++) {
if (!(mask & (1 << u)) || !dp[mask][u]) continue;
// 尝试扩展路径
for (int v : graph[u]) {
if (!(mask & (1 << v))) {
dp[mask | (1 << v)][v] = true;
}
}
}
}
// 检查是否存在哈密尔顿路径
for (int u = 0; u < n; u++) {
if (dp[(1 << n) - 1][u]) {
return true;
}
}
return false;
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> graph(n);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
graph[u].push_back(v);
}
if (has_hamiltonian_path(n, graph)) {
cout << "Yes" << endl;
} else {
cout << "No" << endl;
}
return 0;
}题目描述:判断一个数是否存在原根,如果存在,找出其最小原根。
解题思路:原根的存在条件是该数为2、4、pk或2*pk,其中p是奇素数,k是正整数。要找出最小原根,需要枚举可能的原根,并验证其是否满足条件。
C++代码实现:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
ll pow_mod(ll a, ll b, ll mod) {
ll res = 1;
while (b > 0) {
if (b % 2 == 1) {
res = res * a % mod;
}
a = a * a % mod;
b /= 2;
}
return res;
}
vector<ll> get_primes(ll n) {
vector<ll> primes;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0) {
primes.push_back(i);
while (n % i == 0) {
n /= i;
}
}
}
if (n > 1) {
primes.push_back(n);
}
return primes;
}
bool has_primitive_root(ll n) {
if (n == 2 || n == 4) return true;
if (n % 2 == 0) n /= 2;
if (n % 2 == 0) return false;
vector<ll> primes = get_primes(n);
if (primes.size() != 1) return false;
return true;
}
ll find_min_primitive_root(ll n) {
if (!has_primitive_root(n)) {
return -1;
}
ll phi = n;
if (n % 2 == 0) n /= 2;
for (ll p = 2; p * p <= n; p++) {
if (n % p == 0) {
phi -= phi / p;
while (n % p == 0) {
n /= p;
}
}
}
if (n > 1) {
phi -= phi / n;
}
vector<ll> factors = get_primes(phi);
for (ll g = 2; g < phi + 2; g++) {
bool ok = true;
for (ll f : factors) {
if (pow_mod(g, phi / f, phi + 1) == 1) {
ok = false;
break;
}
}
if (ok) {
return g;
}
}
return -1;
}
int main() {
ll n;
cin >> n;
if (has_primitive_root(n)) {
cout << "最小原根:" << find_min_primitive_root(n) << endl;
} else {
cout << "不存在原根" << endl;
}
return 0;
}题目描述:给定n个集合,求它们的并集的元素个数。
解题思路:使用容斥原理来计算多个集合的并集的元素个数。容斥原理的公式为:|A1∪A2∪…∪An| = Σ|Ai| - Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| - … + (-1)^(n+1)|A1∩A2∩…∩An|。
C++代码实现:
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
ll count_union(int n, vector<ll>& sizes, vector<vector<ll>>& intersections) {
ll result = 0;
// 枚举所有非空子集
for (int mask = 1; mask < (1 << n); mask++) {
int bits = __builtin_popcount(mask);
ll size = 0;
if (bits == 1) {
// 单个集合的大小
for (int i = 0; i < n; i++) {
if (mask & (1 << i)) {
size = sizes[i];
break;
}
}
} else {
// 多个集合的交集的大小
// 这里假设intersections[i][j]表示第i个和第j个集合的交集的大小
// 实际应用中,需要根据具体问题来计算交集的大小
size = 1; // 这里只是一个示例,实际需要根据问题计算
}
if (bits % 2 == 1) {
result += size;
} else {
result -= size;
}
}
return result;
}
int main() {
int n;
cin >> n;
vector<ll> sizes(n);
for (int i = 0; i < n; i++) {
cin >> sizes[i];
}
vector<vector<ll>> intersections(n, vector<ll>(n, 0));
// 输入交集的大小(这里只是一个示例)
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
cin >> intersections[i][j];
intersections[j][i] = intersections[i][j];
}
}
cout << count_union(n, sizes, intersections) << endl;
return 0;
}题目描述:给定多个半平面,求它们的交集。
解题思路:半平面交是计算几何中的一个重要问题,可以使用分治法或增量法来解决。这里使用增量法,依次将每个半平面加入,并维护当前的交集。
C++代码实现:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-8;
const double inf = 1e18;
int dcmp(double x) {
if (fabs(x) < eps) return 0;
return x < 0 ? -1 : 1;
}
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double k) {
return Point(x * k, y * k);
}
};
struct Line {
Point p, v;
double ang;
Line() {}
Line(Point p, Point v) : p(p), v(v) {
ang = atan2(v.y, v.x);
}
bool operator<(const Line& other) const {
return ang < other.ang;
}
};
double cross(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
double dot(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
Point get_intersection(Line a, Line b) {
Point u = a.p - b.p;
double t = cross(b.v, u) / cross(a.v, b.v);
return a.p + a.v * t;
}
bool on_right(Line l, Point p) {
return dcmp(cross(l.v, p - l.p)) < 0;
}
vector<Point> half_plane_intersection(vector<Line> lines) {
int n = lines.size();
sort(lines.begin(), lines.end());
vector<Line> q(n + 10);
int head = 0, tail = 0;
q[tail++] = lines[0];
q[tail++] = lines[1];
for (int i = 2; i < n; i++) {
while (head + 1 < tail && on_right(lines[i], get_intersection(q[tail - 1], q[tail - 2]))) {
tail--;
}
while (head + 1 < tail && on_right(lines[i], get_intersection(q[head], q[head + 1]))) {
head++;
}
q[tail++] = lines[i];
}
while (head + 1 < tail && on_right(q[head], get_intersection(q[tail - 1], q[tail - 2]))) {
tail--;
}
while (head + 1 < tail && on_right(q[tail - 1], get_intersection(q[head], q[head + 1]))) {
head++;
}
if (tail - head <= 2) return {};
vector<Point> polygon;
for (int i = head; i < tail; i++) {
polygon.push_back(get_intersection(q[i], q[(i + 1) % tail]));
}
return polygon;
}
int main() {
int n;
cin >> n;
vector<Line> lines;
for (int i = 0; i < n; i++) {
Point a, b;
cin >> a.x >> a.y >> b.x >> b.y;
lines.emplace_back(a, b - a);
}
vector<Point> polygon = half_plane_intersection(lines);
cout << "半平面交的顶点数:" << polygon.size() << endl;
for (Point p : polygon) {
cout << p.x << " " << p.y << endl;
}
return 0;
}题目描述:实现后缀自动机,统计字符串中不同子串的个数。
解题思路:后缀自动机是一种能够表示一个字符串的所有子串的数据结构。它的每个状态代表一组等价的子串,每个状态有一个len属性,表示该状态对应的最长子串的长度。不同子串的个数等于所有状态的len属性之和减去link属性之和。
C++代码实现:
#include <iostream>
#include <string>
#include <vector>
#include <map>
using namespace std;
struct State {
int len, link;
map<char, int> next;
};
class SuffixAutomaton {
private:
vector<State> st;
int last;
public:
SuffixAutomaton(const string& s) {
st.push_back({0, -1, {}});
last = 0;
for (char c : s) {
extend(c);
}
}
void extend(char c) {
int cur = st.size();
st.push_back({st[last].len + 1, 0, {}});
int p = last;
while (p != -1 && !st[p].next.count(c)) {
st[p].next[c] = cur;
p = st[p].link;
}
if (p == -1) {
st[cur].link = 0;
} else {
int q = st[p].next[c];
if (st[p].len + 1 == st[q].len) {
st[cur].link = q;
} else {
int clone = st.size();
st.push_back({st[p].len + 1, st[q].link, st[q].next});
while (p != -1 && st[p].next[c] == q) {
st[p].next[c] = clone;
p = st[p].link;
}
st[q].link = clone;
st[cur].link = clone;
}
}
last = cur;
}
long long count_distinct_substrings() {
long long count = 0;
for (int i = 1; i < st.size(); i++) {
count += st[i].len - st[st[i].link].len;
}
return count;
}
};
int main() {
string s;
cin >> s;
SuffixAutomaton sa(s);
cout << "不同子串的个数:" << sa.count_distinct_substrings() << endl;
return 0;
}题目描述:给定一个数组,求其线性基,并计算能组成的最大异或值。
解题思路:线性基是一种用于处理异或运算的数据结构。它可以将一组数转换为一组基,使得这组数的任意子集的异或结果都可以由这组基的子集的异或得到。线性基中的基按照二进制位从高到低存储,每个基的最高位唯一。
C++代码实现:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long ll;
class LinearBasis {
private:
vector<ll> base;
public:
LinearBasis(int max_bit = 60) {
base.resize(max_bit + 1, 0);
}
void insert(ll x) {
for (int i = 60; i >= 0; i--) {
if ((x >> i) & 1) {
if (!base[i]) {
base[i] = x;
break;
} else {
x ^= base[i];
}
}
}
}
ll get_max_xor() {
ll res = 0;
for (int i = 60; i >= 0; i--) {
if ((res ^ base[i]) > res) {
res ^= base[i];
}
}
return res;
}
};
int main() {
int n;
cin >> n;
LinearBasis lb;
for (int i = 0; i < n; i++) {
ll x;
cin >> x;
lb.insert(x);
}
cout << "最大异或值:" << lb.get_max_xor() << endl;
return 0;
}题目描述:给定n个字符的频率,构造哈夫曼编码树,计算总编码长度。
解题思路:哈夫曼编码是一种变长编码方案,用于数据压缩。它的基本思想是为频率较高的字符分配较短的编码,频率较低的字符分配较长的编码。构造哈夫曼编码树的方法是使用优先队列,每次选择两个频率最小的节点合并,直到只剩下一个节点。
C++代码实现:
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
ll huffman_encoding(vector<ll>& frequencies) {
priority_queue<ll, vector<ll>, greater<ll>> pq;
for (ll freq : frequencies) {
pq.push(freq);
}
ll total_length = 0;
while (pq.size() > 1) {
ll a = pq.top();
pq.pop();
ll b = pq.top();
pq.pop();
ll sum = a + b;
total_length += sum;
pq.push(sum);
}
return total_length;
}
int main() {
int n;
cin >> n;
vector<ll> frequencies(n);
for (int i = 0; i < n; i++) {
cin >> frequencies[i];
}
cout << "总编码长度:" << huffman_encoding(frequencies) << endl;
return 0;
}难度系数9的题目是高级难度的难题,也是竞赛中的顶级题目。以下是8道典型的难度系数9题目解析。
题目描述:给定一个n×m的网格,每个格子有一个权值,要求选择一些格子,使得任意两个选中的格子不相邻(包括上下左右),并且总权值最大。
解题思路:这是一个典型的状态压缩动态规划问题。对于每一行,用一个二进制数表示该行的选择状态,然后预处理出所有合法的状态(即没有相邻的1的状态)。然后,使用动态规划来转移状态,保证上下两行的状态不冲突。
C++代码实现:
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
ll max_weight(vector<vector<ll>>& grid, int n, int m) {
vector<int> valid_states;
vector<ll> state_values;
// 预处理所有合法的状态
for (int state = 0; state < (1 << m); state++) {
if (!(state & (state << 1))) { // 没有相邻的1
valid_states.push_back(state);
ll value = 0;
for (int j = 0; j < m; j++) {
if (state & (1 << j)) {
value += grid[0][j];
}
}
state_values.push_back(value);
}
}
int cnt = valid_states.size();
vector<vector<ll>> dp(n, vector<ll>(cnt, -INF));
// 初始化第一行
for (int i = 0; i < cnt; i++) {
dp[0][i] = state_values[i];
}
// 预处理所有合法的状态转移
vector<vector<bool>> can_transfer(cnt, vector<bool>(cnt, false));
for (int i = 0; i < cnt; i++) {
for (int j = 0; j < cnt; j++) {
if (!(valid_states[i] & valid_states[j])) { // 上下两行没有冲突
can_transfer[i][j] = true;
}
}
}
// 预处理每一行各个状态的权值
vector<vector<ll>> row_values(n, vector<ll>(cnt, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < cnt; j++) {
ll value = 0;
int state = valid_states[j];
for (int k = 0; k < m; k++) {
if (state & (1 << k)) {
value += grid[i][k];
}
}
row_values[i][j] = value;
}
}
// 动态规划
for (int i = 1; i < n; i++) {
for (int j = 0; j < cnt; j++) {
for (int k = 0; k < cnt; k++) {
if (can_transfer[k][j]) {
dp[i][j] = max(dp[i][j], dp[i - 1][k] + row_values[i][j]);
}
}
}
}
ll max_value = 0;
for (int i = 0; i < cnt; i++) {
max_value = max(max_value, dp[n - 1][i]);
}
return max_value;
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<ll>> grid(n, vector<ll>(m));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
cout << max_weight(grid, n, m) << endl;
return 0;
}题目描述:给定一个二分图,求其最小点覆盖。
解题思路:根据Konig定理,二分图中的最小点覆盖数等于最大匹配数。可以将二分图转换为网络流模型,求其最大流,从而得到最小点覆盖数。
C++代码实现:
#include <iostream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
struct Edge {
int to, rev, capacity;
Edge(int to, int rev, int capacity) : to(to), rev(rev), capacity(capacity) {}
};
class Dinic {
private:
vector<vector<Edge>> graph;
vector<int> level;
vector<int> iter;
void bfs(int s) {
fill(level.begin(), level.end(), -1);
queue<int> q;
level[s] = 0;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (const Edge& e : graph[u]) {
if (e.capacity > 0 && level[e.to] == -1) {
level[e.to] = level[u] + 1;
q.push(e.to);
}
}
}
}
int dfs(int u, int t, int f) {
if (u == t) return f;
for (int& i = iter[u]; i < graph[u].size(); i++) {
Edge& e = graph[u][i];
if (e.capacity > 0 && level[u] < level[e.to]) {
int d = dfs(e.to, t, min(f, e.capacity));
if (d > 0) {
e.capacity -= d;
graph[e.to][e.rev].capacity += d;
return d;
}
}
}
return 0;
}
public:
Dinic(int n) {
graph.resize(n);
level.resize(n);
iter.resize(n);
}
void add_edge(int from, int to, int capacity) {
graph[from].emplace_back(to, graph[to].size(), capacity);
graph[to].emplace_back(from, graph[from].size() - 1, 0);
}
int max_flow(int s, int t) {
int flow = 0;
while (true) {
bfs(s);
if (level[t] == -1) return flow;
fill(iter.begin(), iter.end(), 0);
int f;
while ((f = dfs(s, t, INT_MAX)) > 0) {
flow += f;
}
}
}
};
int min_vertex_cover(int n, int m, vector<pair<int, int>>& edges) {
int total_nodes = n + m + 2;
int source = 0;
int sink = total_nodes - 1;
Dinic dinic(total_nodes);
// 连接源点和左边的节点
for (int i = 1; i <= n; i++) {
dinic.add_edge(source, i, 1);
}
// 连接中间的边
for (auto& edge : edges) {
int u = edge.first + 1;
int v = edge.second + n + 1;
dinic.add_edge(u, v, 1);
}
// 连接右边的节点和汇点
for (int i = n + 1; i <= n + m; i++) {
dinic.add_edge(i, sink, 1);
}
return dinic.max_flow(source, sink);
}
int main() {
int n, m, e;
cin >> n >> m >> e;
vector<pair<int, int>> edges;
for (int i = 0; i < e; i++) {
int u, v;
cin >> u >> v;
edges.emplace_back(u, v);
}
cout << "最小点覆盖数:" << min_vertex_cover(n, m, edges) << endl;
return 0;
}题目描述:计算有多少对(i,j)满足1≤i≤n,1≤j≤m,且gcd(i,j)=k。
解题思路:这是一个典型的莫比乌斯反演问题。我们可以将问题转化为求有多少对(i,j)满足1≤i≤n/k,1≤j≤m/k,且gcd(i,j)=1。然后,使用莫比乌斯反演来计算这个数目。
C++代码实现:
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
vector<int> mobius(int n) {
vector<int> mu(n + 1, 0);
vector<int> primes;
vector<bool> is_prime(n + 1, true);
mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (is_prime[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int p : primes) {
if (i * p > n) break;
is_prime[i * p] = false;
if (i % p == 0) {
mu[i * p] = 0;
break;
} else {
mu[i * p] = mu[i] * mu[p];
}
}
}
return mu;
}
ll count_coprime_pairs(int n, int m) {
int max_n = max(n, m);
vector<int> mu = mobius(max_n);
ll count = 0;
for (int d = 1; d <= max_n; d++) {
if (mu[d] == 0) continue;
count += (ll)mu[d] * (n / d) * (m / d);
}
return count;
}
ll count_pairs_with_gcd_k(int n, int m, int k) {
if (k == 0) return 0;
return count_coprime_pairs(n / k, m / k);
}
int main() {
int n, m, k;
cin >> n >> m >> k;
cout << count_pairs_with_gcd_k(n, m, k) << endl;
return 0;
}题目描述:给定n种物品,每种物品有a_i个,求从中选出m个物品的方案数。
解题思路:这是一个典型的生成函数问题。每种物品的生成函数是1 + x + x^2 + … + x^a_i = (1 - x^(a_i+1))/(1 - x)。所有物品的生成函数的乘积中的x^m项的系数就是所求的方案数。
C++代码实现:
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
ll pow_mod(ll a, ll b, ll mod) {
ll res = 1;
while (b > 0) {
if (b % 2 == 1) {
res = res * a % mod;
}
a = a * a % mod;
b /= 2;
}
return res;
}
vector<ll> multiply(vector<ll>& a, vector<ll>& b) {
int n = a.size(), m = b.size();
vector<ll> res(n + m - 1, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
res[i + j] = (res[i + j] + a[i] * b[j]) % MOD;
}
}
return res;
}
vector<ll> divide(vector<ll>& a, vector<ll>& b) {
int n = a.size(), m = b.size();
vector<ll> res(n, 0);
ll inv_b0 = pow_mod(b[0], MOD - 2, MOD);
for (int i = 0; i < n; i++) {
res[i] = a[i] * inv_b0 % MOD;
for (int j = 1; j < m && i + j < n; j++) {
res[i + j] = (res[i + j] - res[i] * b[j] % MOD + MOD) % MOD;
}
}
return res;
}
ll count_ways(int n, int m, vector<int>& a) {
vector<ll> numerator = {1};
vector<ll> denominator = {1};
for (int i = 0; i < n; i++) {
vector<ll> poly(a[i] + 2, 0);
poly[0] = 1;
poly[a[i] + 1] = MOD - 1;
numerator = multiply(numerator, poly);
}
vector<ll> denom_poly(2, 0);
denom_poly[0] = 1;
denom_poly[1] = MOD - 1;
for (int i = 0; i < n; i++) {
denominator = multiply(denominator, denom_poly);
}
vector<ll> result = divide(numerator, denominator);
if (m >= result.size()) {
return 0;
}
return result[m];
}
int main() {
int n, m;
cin >> n >> m;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
cout << count_ways(n, m, a) << endl;
return 0;
}题目描述:给定空间中的n个点,求它们的凸包。
解题思路:三维凸包是二维凸包的扩展,可以使用增量法来构建。基本思想是依次将每个点加入凸包,然后更新凸包的面。
C++代码实现:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
const double eps = 1e-8;
int dcmp(double x) {
if (fabs(x) < eps) return 0;
return x < 0 ? -1 : 1;
}
struct Point3D {
double x, y, z;
Point3D(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
Point3D operator-(Point3D a) {
return Point3D(x - a.x, y - a.y, z - a.z);
}
bool operator==(Point3D a) {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0 && dcmp(z - a.z) == 0;
}
};
struct Face {
int v[3];
Face(int a, int b, int c) {
v[0] = a, v[1] = b, v[2] = c;
}
Point3D normal(vector<Point3D>& p) {
return cross(p[v[1]] - p[v[0]], p[v[2]] - p[v[0]]);
}
};
Point3D cross(Point3D a, Point3D b) {
return Point3D(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
double dot(Point3D a, Point3D b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
double dist(Point3D a, Point3D b) {
return sqrt(dot(a - b, a - b));
}
vector<Face> convex_hull_3d(vector<Point3D>& points) {
int n = points.size();
vector<Face> hull;
// 找到四个不共面的点
int a = 0, b = 1, c = 2, d = 3;
while (d < n) {
Point3D n = cross(points[b] - points[a], points[c] - points[a]);
if (dcmp(dot(n, points[d] - points[a])) != 0) break;
d++;
}
if (d == n) return hull; // 所有点共面
// 添加初始的四个面
hull.emplace_back(a, b, c);
hull.emplace_back(a, c, d);
hull.emplace_back(a, d, b);
hull.emplace_back(b, d, c);
// 依次添加其他点
for (int i = 0; i < n; i++) {
if (i == a || i == b || i == c || i == d) continue;
vector<bool> visible(hull.size(), false);
vector<vector<int>> edges;
// 检查每个面是否可见
for (int j = 0; j < hull.size(); j++) {
Point3D n = hull[j].normal(points);
double d = dot(n, points[i] - points[hull[j].v[0]]);
if (dcmp(d) > 0) {
visible[j] = true;
// 记录可见面的边
edges.push_back({hull[j].v[0], hull[j].v[1]});
edges.push_back({hull[j].v[1], hull[j].v[2]});
edges.push_back({hull[j].v[2], hull[j].v[0]});
}
}
// 过滤出现偶数次的边(内部边)
map<pair<int, int>, int> edge_count;
for (auto& e : edges) {
if (e[0] > e[1]) swap(e[0], e[1]);
edge_count[{e[0], e[1]}]++;
}
vector<pair<int, int>> boundary_edges;
for (auto& p : edge_count) {
if (p.second == 1) {
boundary_edges.push_back(p.first);
}
}
// 移除可见面
vector<Face> new_hull;
for (int j = 0; j < hull.size(); j++) {
if (!visible[j]) {
new_hull.push_back(hull[j]);
}
}
// 添加新的面
for (auto& e : boundary_edges) {
new_hull.emplace_back(e.first, e.second, i);
}
hull = new_hull;
}
return hull;
}
int main() {
int n;
cin >> n;
vector<Point3D> points;
for (int i = 0; i < n; i++) {
double x, y, z;
cin >> x >> y >> z;
points.emplace_back(x, y, z);
}
vector<Face> hull = convex_hull_3d(points);
cout << "凸包的面数:" << hull.size() << endl;
for (Face f : hull) {
cout << f.v[0] << " " << f.v[1] << " " << f.v[2] << endl;
}
return 0;
}题目描述:给定n个模式串和一个文本串,统计有多少个模式串在文本串中出现过。
解题思路:AC自动机是一种用于多模式字符串匹配的数据结构。它由Trie树和KMP算法的思想结合而来,能够在线性时间内完成多模式匹配。
C++代码实现:
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int MAXN = 10000;
const int SIGMA_SIZE = 26;
struct ACNode {
int children[SIGMA_SIZE];
int fail;
int cnt;
ACNode() {
memset(children, -1, sizeof(children));
fail = 0;
cnt = 0;
}
};
class ACAutomaton {
private:
vector<ACNode> nodes;
public:
ACAutomaton() {
nodes.push_back(ACNode());
}
void insert(string s) {
int u = 0;
for (char c : s) {
int idx = c - 'a';
if (nodes[u].children[idx] == -1) {
nodes[u].children[idx] = nodes.size();
nodes.push_back(ACNode());
}
u = nodes[u].children[idx];
}
nodes[u].cnt++;
}
void build() {
queue<int> q;
for (int i = 0; i < SIGMA_SIZE; i++) {
if (nodes[0].children[i] != -1) {
nodes[nodes[0].children[i]].fail = 0;
q.push(nodes[0].children[i]);
}
}
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = 0; i < SIGMA_SIZE; i++) {
if (nodes[u].children[i] != -1) {
int v = nodes[u].children[i];
int f = nodes[u].fail;
while (f != 0 && nodes[f].children[i] == -1) {
f = nodes[f].fail;
}
if (nodes[f].children[i] != -1) {
f = nodes[f].children[i];
}
nodes[v].fail = f;
q.push(v);
}
}
}
}
int query(string s) {
int u = 0;
int count = 0;
for (char c : s) {
int idx = c - 'a';
while (u != 0 && nodes[u].children[idx] == -1) {
u = nodes[u].fail;
}
if (nodes[u].children[idx] != -1) {
u = nodes[u].children[idx];
}
int v = u;
while (v != 0) {
count += nodes[v].cnt;
nodes[v].cnt = 0; // 避免重复计数
v = nodes[v].fail;
}
}
return count;
}
};
int main() {
int n;
cin >> n;
ACAutomaton ac;
for (int i = 0; i < n; i++) {
string s;
cin >> s;
ac.insert(s);
}
ac.build();
string text;
cin >> text;
cout << "匹配的模式串数量:" << ac.query(text) << endl;
return 0;
}题目描述:给定一个无向图,求其生成树的数量。
解题思路:矩阵树定理是一种用于计算图的生成树数量的定理。它的基本思想是构造一个度数矩阵和一个邻接矩阵,然后计算它们的差的任一n-1阶主子式的行列式,结果就是生成树的数量。
C++代码实现:
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
typedef long long ll;
const ll MOD = 1e9 + 7;
ll gauss(vector<vector<ll>>& a) {
int n = a.size();
ll res = 1;
for (int i = 0; i < n; i++) {
// 找到第i列非零的行
int pivot = -1;
for (int j = i; j < n; j++) {
if (a[j][i] != 0) {
pivot = j;
break;
}
}
if (pivot == -1) return 0;
if (pivot != i) {
swap(a[i], a[pivot]);
res = (MOD - res) % MOD;
}
// 高斯消元
for (int j = i + 1; j < n; j++) {
while (a[j][i] != 0) {
ll ratio = a[j][i] * res % MOD;
for (int k = i; k < n; k++) {
a[j][k] = (a[j][k] - ratio * a[i][k] % MOD + MOD) % MOD;
}
if (a[j][i] != 0) {
swap(a[i], a[j]);
res = (MOD - res) % MOD;
}
}
}
res = res * a[i][i] % MOD;
}
return res;
}
ll count_spanning_trees(int n, vector<pair<int, int>>& edges) {
vector<vector<ll>> laplacian(n, vector<ll>(n, 0));
for (auto& edge : edges) {
int u = edge.first;
int v = edge.second;
laplacian[u][u] = (laplacian[u][u] + 1) % MOD;
laplacian[v][v] = (laplacian[v][v] + 1) % MOD;
laplacian[u][v] = (laplacian[u][v] - 1 + MOD) % MOD;
laplacian[v][u] = (laplacian[v][u] - 1 + MOD) % MOD;
}
// 去掉最后一行和最后一列
vector<vector<ll>> matrix(n - 1, vector<ll>(n - 1));
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1; j++) {
matrix[i][j] = laplacian[i][j];
}
}
return gauss(matrix);
}
int main() {
int n, m;
cin >> n >> m;
vector<pair<int, int>> edges;
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
edges.emplace_back(u, v);
}
cout << "生成树的数量:" << count_spanning_trees(n, edges) << endl;
return 0;
}题目描述:给定一个无向图,其中包含k个关键点,求一棵最小生成树,使得所有k个关键点都在这棵树上。
解题思路:最小斯坦纳树是一种用于解决部分顶点生成树问题的算法。它的基本思想是使用状态压缩动态规划,结合最短路算法来求解。
C++代码实现:
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
const int MAXN = 100;
const int MAXK = 10;
ll min_steiner_tree(int n, int k, vector<vector<pair<int, ll>>>& graph, vector<int>& terminals) {
vector<vector<ll>> dp(1 << k, vector<ll>(n, INF));
// 初始化
for (int i = 0; i < k; i++) {
dp[1 << i][terminals[i]] = 0;
}
// 状态转移1:合并两个状态
for (int mask = 1; mask < (1 << k); mask++) {
for (int u = 0; u < n; u++) {
for (int submask = (mask - 1) & mask; submask > 0; submask = (submask - 1) & mask) {
dp[mask][u] = min(dp[mask][u], dp[submask][u] + dp[mask ^ submask][u]);
}
}
// 状态转移2:使用Dijkstra算法更新最短路
priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> pq;
for (int u = 0; u < n; u++) {
if (dp[mask][u] < INF) {
pq.emplace(dp[mask][u], u);
}
}
while (!pq.empty()) {
auto [d, u] = pq.top();
pq.pop();
if (d > dp[mask][u]) continue;
for (auto& [v, w] : graph[u]) {
if (dp[mask][v] > dp[mask][u] + w) {
dp[mask][v] = dp[mask][u] + w;
pq.emplace(dp[mask][v], v);
}
}
}
}
ll min_cost = INF;
for (int u = 0; u < n; u++) {
min_cost = min(min_cost, dp[(1 << k) - 1][u]);
}
return min_cost;
}
int main() {
int n, m, k;
cin >> n >> m >> k;
vector<vector<pair<int, ll>>> graph(n);
for (int i = 0; i < m; i++) {
int u, v;
ll w;
cin >> u >> v >> w;
graph[u].emplace_back(v, w);
graph[v].emplace_back(u, w);
}
vector<int> terminals(k);
for (int i = 0; i < k; i++) {
cin >> terminals[i];
}
cout << "最小斯坦纳树的权值:" << min_steiner_tree(n, k, graph, terminals) << endl;
return 0;
}通过对2025年IO竞赛高级难度题目的解析,我们可以总结出以下解题策略:
高级解题策略: 问题分析 → 数学建模 → 算法设计 → 优化实现 → 测试验证要成为IO竞赛的顶尖选手,需要付出大量的努力和汗水。以下是一些顶尖选手的训练方法:
顶尖选手训练路径: 基础巩固 → 专题突破 → 综合训练 → 模拟比赛 → 实战提升 → 创新应用IO竞赛高级难度的题目是竞赛中的顶级挑战,也是区分顶尖选手的关键。通过系统地学习算法和数据结构,掌握各种解题技巧,选手们可以逐步提高解决复杂问题的能力,为在竞赛中取得好成绩奠定基础。希望本文的解析能够帮助读者在IO竞赛的道路上更进一步。
学习价值分布:
算法设计(25%) | 数学建模(25%) | 问题分析(20%) | 代码实现(15%) | 优化策略(15%)互动讨论: