技术架构:
python
import torch
from transformers import ViTForImageClassification, AutoProcessor
from pet_diagnosis import SymptomAnalyzer # 假设的病理知识库
# 多模态特征提取
def multi_modal_analysis(image_path, text_description):
# 视觉特征提取
processor = AutoProcessor.from_pretrained("google/vit-base-patch16-224")
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
visual_features = model(**inputs).logits
# 文本特征提取
text_encoder = torch.load('pet_bert.pth') # 预训练文本模型
text_features = text_encoder.encode(text_description)
# 多模态融合
fused_features = torch.cat([visual_features, text_features], dim=1)
diagnosis = SymptomAnalyzer.predict(fused_features)
return diagnosis
# 示例使用
result = multi_modal_analysis("skin_lesion.jpg", "猫咪持续抓挠患处3天")
print(f"AI诊断建议:{result}")
需求预测模型:
python
from fbprophet import Prophet
import pandas as pd
# 历史销售数据预处理
data = pd.read_csv('pet_food_sales.csv')
data['ds'] = pd.to_datetime(data['date'])
data['y'] = data['sales_volume']
# 多变量预测模型
model = Prophet()
model.add_regressor('weather_temp') # 天气因子
model.add_regressor('social_media_mentions') # 社交媒体热度
model.fit(data)
# 生成未来预测
future = model.make_future_dataframe(periods=30)
future['weather_temp'] = [25]*30 # 天气预报数据
future['social_media_mentions'] = get_social_trends() # 实时爬取社交数据
forecast = model.predict(future)
plot_forecast(forecast) # 可视化库存建议
推荐系统实现:
python
from sentence_transformers import SentenceTransformer
from sklearn.neighbors import NearestNeighbors
# 多模态嵌入模型
multimodal_model = SentenceTransformer('clip-ViT-B-32')
# 生成商品特征矩阵
product_data = {
"冻干鸡肉粮": ("product_image.jpg", "高蛋白无谷配方"),
"智能饮水机": ("waterer.jpg", "流动水循环系统")
}
embeddings = []
for desc, (img_path, text) in product_data.items():
image_emb = multimodal_model.encode(Image.open(img_path))
text_emb = multimodal_model.encode(text)
combined_emb = np.concatenate([image_emb, text_emb])
embeddings.append(combined_emb)
# 构建推荐索引
nn = NearestNeighbors(n_neighbors=3).fit(embeddings)
# 用户特征匹配
user_pet = ("波斯猫", "皮肤敏感", "activity_log.csv")
user_emb = multimodal_model.encode(user_pet[1]) # 文本特征编码
_, indices = nn.kneighbors([user_emb])
print("推荐商品:", [list(product_data.keys())[i] for i in indices[0]])
python
class PetKG: def __init__(self): self.entities = { 'breed': {'波斯猫': {'寿命': '15-20年', '常见疾病': ['多囊肾']}}, 'disease': {'皮肤病': {'症状': ['瘙痒', '脱毛'], '治疗方案': [...]}} } def query(self, entity_type, entity_name): return self.entities.get(entity_type, {}).get(entity_name, {})
通过API网关实现模块化部署,逐步将AI能力注入供应链管理(S)、门店运营(B)、消费者服务(C)全链条,最终形成数据驱动的智能养护闭环。实际落地需重点关注宠物数据隐私保护和AI可解释性设计。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。