前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >基于模式挖掘的可靠性治理探索与实践

基于模式挖掘的可靠性治理探索与实践

作者头像
美团技术团队
发布于 2023-10-19 07:45:58
发布于 2023-10-19 07:45:58
2930
举报
文章被收录于专栏:美团技术团队美团技术团队
本文整理自美团技术沙龙第77期《美团亿级流量系统的质量风险防控和稳定性治理实践》。本文介绍了基于模式挖掘的可靠性治理探索,为通过技术手段解决该领域代表性问题开启了新的思路。文章第一部分介绍可靠性治理的痛点;第二部分引入模式的概念;第三部分讨论新基建下的新尝试;第四部分分享三个典型的实践案例。

1 可靠性治理的痛点

对于亿级流量的线上系统来说,可靠性是至关重要的。从字面上理解,可靠性要求故障少、可信赖。与安全性一样,它们都是信息系统的固有属性之一,也是保障产品质量的关键因素。

对照Google的可靠性模型来看,测试同学会投入很多精力在用例设计、测试执行、持续交付等环节上,研发同学则会更多关注监控、应急和故障分析等。但往往由于项目进度和人力因素,在设计和编码阶段对可靠性的投入和关注不足,导致后续需要付出更高的成本发现和解决潜在隐患。有鉴于此,我们希望能找到更低成本且以更有效的方式发现和治理这些隐患,从而提升系统整体的可靠性。

在研发设计阶段,我们需要关注系统弹性,考虑潜在故障风险、适应流量变化等,其中相关治理涉及幂等性、健壮性、一致性、超时、限流、熔断等场景。与一般功能测试相比,可靠性治理需要面对不同的服务和系统,发现并治理技术问题,在模糊度上有较大的提升和挑战。就目前而言,质量问题非常明确,但潜在风险策略和解决路径比较模糊。因此,我们希望能找到办法识别并解决这些问题。

模糊度的提升会带来两种最常见的现象:

  • 一种是过于具体,Case by Case解决问题,类似算法的过拟合,过拟合的问题在于对更广泛范围内的问题缺乏有效性。以幂等性为例,想验证一个接口是否幂等可以很快完成并很快补充接口幂等相关的测试用例,但是对不同的接口、服务、系统以及不同的幂等性设计,还有哪些问题和风险,我们没有办法关注到并控制这些风险。
  • 另一种是过于泛化,类似算法的欠拟合,欠拟合的问题在于过度虚化导致没有抓住问题的共性特征。以主从延迟为例,主从延迟会给系统带来一致性风险,需要针对性做保护,并进行相关验证,因此我们可以制定规范、梳理Check List和测试模板,虽然这样可以最大程度在产研各环节提醒大家关注到这类问题,但并没有找到彻底解决问题的方法。

2 模式的定义

类似这些问题如何找到更好的解决办法?我们重点看一下模式对可靠性治理的启发。模式在维基百科的定义是:揭示了这个世界上人工设计和抽象思想中的规律。

例如下图所示,计算机图形学中的经典分形图案柯赫雪花,是1904年瑞典数学家科赫提出。可以看到它有明显的规律,这样的分形规律在自然界无处不在。

技术场景的模式会更加丰富些,这类模式和可靠性治理想找到的模式非常接近。

举例缓存设计的两种常见模式:

  • 第一种是Cache-Aside(旁路缓存),也是使用比较广泛的一种方式,它只有在缓存没有命中时,才会查询数据库并更新缓存。
  • 另外一种是Write-throught(只写模式),这种模式在每次数据库变更时都会同步更新缓存。

对比第一种模式,第二种模式的优点是逻辑更清晰、操作简单、缓存命中率更高;缺点是不常请求的数据会被写到缓存中,导致缓存更大。

那么,我们如何找到这些潜在模式并应用到可靠性治理呢?我们现有的业务测试数据、专业知识积累、相关问题分析和复盘经验,都可以帮助我们找到治理这些通用技术场景的规律。在这里,很重要的一部分是真实的业务数据,我们可以从最基础的数据提取信息,找到解决共性问题的思路。

3 大数据下的尝试

随着JVM非侵入式AOP解决方案的成熟,现在我们已经可以采集任意环境下的任意协议流量,以及这些流量依赖的数据关系,也可以在测试环境回放这些流量,包括线上真实采集的流量。这里依赖两个关键点:一是流量采集,这里涉及很多技术方案,这里分享主要是作为一个基础设施;二是有了全链路Mock能力,我们才能在测试环境进行各种流量的回放和验证。

另一个重要基础设施是环境隔离技术,经过快速发展,它已经具备了泳道级别的数据复制隔离,也支持一站式数据消息和部署环境的即拿即用。从最开始通过泳道降低人工测试相互影响,到现在一站式拉出一套环境,能支持各类专项检查独立运行,使用线下数据且不污染主干环境。

基于流量采集和环境隔离这两个能力的成熟,给自动化领域带来了很多新可能。流量采集信息包含了请求参数、返回值和调用链路等信息;环境隔离技术支持数据隔离、消息隔离、各种协议以及部署版本隔离。

在这种情况下,海量的业务流量可以直接转化成基于规则验证的接口自动化用例,也可以应用到基于业务模型的场景级用例,模式在这里更像是两者之间的“折中”,我们希望通过这种“折中”来解决可靠性治理的难题。

4 典型实践分享

接下来,我们重点介绍基于模式的三个可靠性治理的典型实践,主要包括幂等性治理、依赖治理和越权治理三个方向。

4.1 幂等性治理

维基百科中,幂等的定义是数学和计算机科学中某些运算的性质,可以被多次应用,而不会改变最初应用之外的结果。在数学中也有相关的定义,就以一元运算为例,当f(f(x))=f(x)时,可以认为这个运算符f是幂等的;在计算机科学领域,HTTP规范中也有对幂等的定义,即多个相同请求的副作用与单个请求相同,例如GET、PUT和DELETE是幂等的。

在大部分分布式系统中,请求超时、网络抖动等在线上环境中随时可能发生。幂等性设计是保证服务在高并发情况下高可用的关键。对于每天产生海量订单的线上业务,比如库存、交易、支付和财务等系统都需要通过幂等性避免超卖、重复支付、重复打款等问题的发生;同时幂等性也是消息队列、定时任务、分布式事务等技术类场景稳定运行的基础。

如下图举例,当一次调用部分成功的情况下,系统会触发重试,而幂等性可以保证在重试时,成功部分不再被重复执行。

我们要挖掘通用模式,就需要分析幂等性所有可能的实现方案。

如下图是几种常见的幂等性实现方案:数据库层面的唯一索引;通过版本或其他状态、条件来限制操作执行的悲观锁和乐观锁;通过具体业务属性参数,构造具有唯一性的Token以及分布式系统中广泛使用的分布式锁等。

尽管幂等性的实现方案有多种,但回到幂等性的本质,我们希望多次调用不会产生新的副作用,而系统中副作用的产生往往是通过“写”操作发生。

分析调用链路发现,当链路上某个节点不幂等而对资源产生副作用后,其后的多个节点都可以检测到相关变化。例如,前序节点通过数据库的写入生成了新的单号,后序节点的参数和返回值很可能会出现这个新单号。这样,我们就可以构造多次同样的请求,之后检查链路上的这些变化来验证幂等性。

调用链路节点的类型包括了MYBATIS、RPC、HTTP、MAFKA、CRANE等,不同幂等性方案在不同类型的节点上有相应的表现,例如唯一索引,更多在MYBATIS节点上,不同类型节点的检查策略和优先级也不同。

如下图,列举了部分节点检查策略和降噪策略。以MYBATIS为例,我们会关注到写SQL的内容和返回结果,结合索引冲突、锁失败等节点的异常返回进行降噪。比如THRIFT节点,我们会关注接口的参数和返回值变化,考虑随机ID的生成、时间戳字段等进行相关降噪,最终针对不同幂等性方案和不同节点类型形成通用整体策略。

基于通用检查能力,我们可以应用在场景用例编写、流量用例生成和离线流量的自动分析上,通过分析每天线上、线下环境产生的真实流量,我们可以对增量和存量问题进行差异化治理和跟进。

4.2 依赖治理

随着微服务的发展,我们的系统变得越来越复杂,调用链路越来越长,例如单接口的下游依赖多达上百个,任何外部依赖的抖动都会成为核心业务的威胁,很多时候系统内部或外部的一些错误被激活,没有得到正确处理,就会在服务内部不断传播,导致系统偏离正确的服务状态,造成服务失败,最终导致业务失败,引起用户可以感知的故障。

在业务上可以通过依赖分级和熔断策略,保障弱依赖发生故障时,核心流程依然可用。因此我们需要进行依赖治理,而依赖的治理关键在于如何自动化完成分级合理性以及熔断策略有效性的验证。

类似前面,我们会采用回放业务流量的方式,但基于依赖治理,我们的策略是修改依赖的Mock结构,构造依赖故障场景,进行相关验证。

我们的预期是如果命中了弱依赖,我们期望业务主流程不被阻塞,调用链路也没有阻塞,日志打印和返回信息都符合预期,没有异常表现;如果命中强依赖,验证策略则相反。

具体的策略是我们依据接口和依赖关系构造指定依赖故障场景,注入异常后,分析这个异常是否被捕获。如果直接抛到了外层或者接口返回值有相关的异常信息,那当前是强依赖;如果注入依赖后,后续的调用链路被阻断,认为当前依赖是强依赖。反之,则是弱依赖。

具备这样闭环依赖分级识别以及熔断有效性的治理能力后,我们就可以周期性地对核心服务进行下游依赖等级治理和对熔断策略有效性进行自动验证。

运营内容主要包括两方面:配置检查和业务验证。

  • 对于依赖等级正确与否的检查,每周运行,发现依赖等级与熔断策略不相符的情况,推动治理。
  • 对于业务验证,每天运行,持续产生每天增量报告,针对强依赖业务未被阻断、弱依赖业务未被处理,对应的异常等问题推动修改。

4.3 越权治理

越权访问是Web应用程序中一种常见的漏洞,它存在范围广、危害大,被OWASP应用程序安全项目列为Web应用十大安全隐患第二名。对于这种商户、用户规模大,交易频繁的线上业务来说,更是存在比较大的安全和合规风险。

越权就是两个同等级用户,一个可以操作另一个数据;垂直越权则涉及到不同等级用户,例如普通用户可以操作管理员才有的权限数据。

典型的有越权处理接口在收到请求后经历以下三个阶段:

  • 第一步是身份认证,让系统明确当前登录的用户是谁,是后续进行鉴权的基础条件,每家公司和业务可能会有多套鉴权系统。
  • 第二步是系统决策判断,基于当前登录用户信息,根据身份权限判断是否可以继续操作。
  • 第三步是数据权限验证,判断当前数据是否是该用户所属,即数据归属判断。

当系统未做角色判断时,容易发生垂直越权问题;当系统未做数据归属判断时,容易发生水平越权问题。

我们可以通过回放业务流量构造对应场景,验证接口是否有做权限控制。

第一次回放,会结合识别到当前流量鉴权方式,构造一个无权限账户进行回放,其余的依赖数据保持不变;第二次回放与第一次类似,只不过需要构造一个有权限账户信息进行回放;比对两次回放结果以及调用链路,验证这个接口是否有相关的鉴权逻辑;再结合调用链路对比以及原始流量的调用链路,比较有效地识别当前的鉴权场景,兼容一些场景通过返回值没有办法完全识别到是否有做鉴权的情况。

在实际应用中,要考虑我们所使用的流量质量、有效性以及鉴权方式等进行筛选。目前越权检查经过优化和适配不同业务,已经可以自动化、常态化对新增流量进行检测,并将结果同步到报告中,进行日常运营,也支持问题确认、加白和工单创建等。

以上三个治理能力,已经对美团优选部分核心服务默认开启,可以低成本自动化实现相关问题的常态治理及运营。目前覆盖了500+服务、2万+接口和8000+下游、累计发现并治理问题有1000+。近期已经开始陆续接入到公司内其他业务线进行应用。

通过以上3个案例,我们可以看到共性能力和解法,因此后续的规划主要是建设通用基础设施,包含线上、线下以及不同来源的流量积累、流量分析,在其上进行模式挖掘、结果跟进和运营,在这样体系基础上,不断迭代底层能力,构建更丰富的可靠性治理场景。

5 Q&A

Q1:怎样预防配置异常造成的故障?

A:用相关事件举例,我们的一些配置平台包含一些规则,可以字符串形式或者一些类型形式存储,系统对这些配置的兼容性或表现,我们可以构造这些配置的异常场景,比如它当前是一个数值类型的配置,那我们可以构造这个配置的异常值、边界值以及空值,比如它包含分隔符的字符串,我们可以用特殊分隔符以及特殊字符,构造异常配置的获取,验证一个配置的兼容性和可靠性的规则是当读取到这样的异常配置后,我们本来能正确回放的流量,在返回值、抛出异常、日志和调用链路层面有哪些相应表现。很多线上配置变更,因为人为原因和系统默认规则没有兜住的情况下,会引入这样的异常配置健壮性验证,有比较好的保障。

Q2:越权场景检查,链路对比是指走过的链路对比吗?还是每个调用点数据对比?

A:对于越权场景,我们可以识别到它在哪个环节进行了鉴权相关调用,不同的鉴权体系,有对应的权限相关服务和基础接口,构造有权限和没权限的场景后,它会识别没权限后的链路调用变化,比如链路节点数量以及哪个节点返回可以发现大部分问题,如果在这层没有识别到是否做鉴权,我们会关注每个节点的请求和返回,通过其他维度信息增强发现的有效性,降低噪声。

Q3:怎么自动构造接口里没有权限的用户?

A:在原始流量里,我们可以识别到它当前的鉴权方式以及它使用了哪些鉴权服务。这样,我们可以基于这个鉴权方式和服务构造有权限或者没有权限的用户。

Q4:可靠性治理系统是自研的,还是开源的,研发工作量多少人月?

A:可靠性系统建设的思路,目前是自研,它基于美团的基础设施和能力,展开上层解决可靠性问题的实践;研发工作量其实还好,它的点在于我们能找到哪些可以进行治理,快速迭代相关能力,并且在这一过程中不断补全新能力加进去,因此它是一个持续的过程,整体规划上,我们会考虑可靠性,从服务和代码的每一层,从机器、资源、基础组件到服务自身、上游流量和网关分层,拆分不同节点,构建不同策略,这样会有一个整体投入。

Q5:流量限流和服务降级如何实现?

A:美团有服务限流和降级能力的基础设施Rhino平台,服务降级是研发根据当前依赖等级,结合具体业务分析它是否是一个可降级的依赖,再配置对应的熔断策略,当降级时,是绕过当前故障进行降级还是在故障恢复后Fallback,这样的相关规则和策略都可以配置化,自动化验证这些策略是否生效、是否符合预期。

Q6:在有了这些能力基础上,基于模式的可靠性治理用例占比多少?价值怎样评价?

A:我们想基于模式找到一个通用的治理策略和能力,这样的话,我们就可以将线上、线下海量流量数据都应用到这里,不需要QA同学投入成本,编写对应的用例,对于研发来说,我们希望直接确认和解决一些已识别到的问题,只需要花费问题确认和修复的成本。对于可识别用例占比,因为它是基于全量流量,所以随着时间的积累,历史场景以及新场景会相应覆盖到,它的用例有多少,取决于流量池以及流量质量和代表性。

Q7:流量回放Mock,使用字节码,还是沙箱模式?

A:这里用到美团的基础设施能力,它在采集过程中,基于字节码增强采集,回放能力也是使用到了同样的能力。

---------- END ----------

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-10-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 美团技术团队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
聊一聊接口测试需要关注的点有哪些?
接口测试的关注点通常包括功能正确性、性能、安全性、兼容性、可靠性、数据管理、文档规范、异常处理、幂等性、上下游影响、测试数据构造以及持续集成等。
漫谈测试
2025/04/22
980
聊一聊接口测试需要关注的点有哪些?
美团下一代服务治理系统 OCTO2.0 的探索与实践
本文根据美团基础架构部服务治理团队工程师郭继东在2019 QCon(全球软件开发大会)上的演讲内容整理而成,主要阐述美团大规模治理体系结合 Service Mesh 演进的探索实践,希望对从事此领域的同学有所帮助。
美团技术团队
2019/12/19
7210
美团下一代服务治理系统 OCTO2.0 的探索与实践
突围电商大促场景,得物在高可用上的探索与实践 | 卓越技术团队访谈录
采访嘉宾 | 金思宇、陈贞宝、胡强忠 编辑 | 辛晓亮   大型电商系统并非一开始就具有完整设计的高可用特性,而是随着用户的不断增加与业务的快速增长逐步演进与完善的。当前高可用架构体系是互联网企业系统架构的基础要求,随着公司的业务发展,尤其是对于电商平台,每次发生稳定性故障带来的影响越来越大,提供稳定的服务,保证系统的高可用已经变成了整个技术团队需要面对的挑战。 基于此,我们深度采访了得物技术团队核心成员,探索他们在高可用架构上的实践、演进,深入了解大促备战是如何进行的,异地多活体系是如何建设的,全链路
深度学习与Python
2023/03/29
2.1K0
突围电商大促场景,得物在高可用上的探索与实践 | 卓越技术团队访谈录
微服务系列 2:微服务化框架的模型和治理能力设计
紧接上一篇,微服务系列 1:微服务化框架落地的挑战和核心需求,那么基于这些核心诉求,我们整个的微服务框架的模型是如何?又该具备哪些核心的治理能力呢?通过本文来一一知晓!
Allen.Wu
2023/03/01
7780
微服务系列 2:微服务化框架的模型和治理能力设计
开源 | 流量回放平台 AREX 在携程的大规模落地实践
携程AREX团队,机票质量工程组,主要负责开发自动化测试工具和技术,以提升质量和能效。
携程技术
2024/04/23
7831
开源 | 流量回放平台 AREX 在携程的大规模落地实践
同城双活:交易链路的稳定性与可靠性探索
2022年,基于对稳定性的焦虑...和思考,交易平台联动中间件平台启动过异地多活项目的探索,虽然完成了核心应用及基础组件的改造,但在疫情&降本增效的影响下并未真正投产,同时也缺乏充分的测试以及线上流量的大规模验证;后续在不断的业务迭代中,相关设计及代码被冲击的面目全非,相关的多活自动化测试case也并没有沉淀下来。
得物技术
2024/03/27
5171
同城双活:交易链路的稳定性与可靠性探索
微服务架构原理与治理实践|青训营笔记
对于单体服务,不同模块通信只是简单的函数调用,对于微服务,服务间通信意味着网络传输。
白泽z
2022/08/18
3710
微服务架构原理与治理实践|青训营笔记
面向异构技术栈和基础设施的服务治理标准化
作者简介 单家骏 腾讯云高级研发工程师 腾讯北极星(PolarisMesh)开源项目、弹性微服务引擎TSE核心研发,10+年从业经验,从事云计算及中间件 7 年有余。热爱开源、崇尚技术,希望能够使用技术使软件的应用变得简单、高效和美好。 前言 在已落幕的 QCon 全球软件开发大会·北京站《云原生微服务架构新趋势》专场,业界大佬们针对以基础设施和业务分离为核心目标,多运行时 /Dapr 等概念/项目被提出已有 2 年有余,它们是否真正解决了我们面临的问题?业务的反馈如何?是一个明确的新趋势吗?另一边,微服
腾讯云中间件团队
2023/03/24
6140
面向异构技术栈和基础设施的服务治理标准化
【架构设计复习】高可用,高扩展实现方案
通过心跳检测并实施主备切换(比如redis的哨兵模式或者集群模式、MySQL的主从切换等)。
韩旭051
2021/04/14
9640
在终一致性分布式事务中,对于异常情况和高并发场景的处理策略和解决方案
综上所述,终一致性分布式事务中的异常处理可以通过重试、补偿机制、超时机制、日志记录和回放、异常通知和监控等方式来保证系统的一致性和可靠性。具体的处理策略取决于系统的实际情况和需求。
一凡sir
2023/11/18
4940
在终一致性分布式事务中,对于异常情况和高并发场景的处理策略和解决方案
春节保卫战:腾讯百万 QPS 线上环境云压测方案解析
导语|春节期间腾讯大部分业务进入流量备战的紧张时刻。压测相比于监控而言,是更具主动性的筹备手段。通过高负载、真实流量的预演,探测系统的瓶颈和发现风险,是服务质量保障体系的重要一环。云压测主要聚焦在压测平台的发压端基础能力构建,本文作者张泽强分享云压测备战春节期间从压测模型选型、用例编写、测试数据构建到压测报表分析的压测方案。期望对你有帮助。 目录 1 背景与挑战 2 解决方案     2.1 压测模式选型     2.2 压测用例编写     2.3 测试数据构造     2.4 压测报表分析 3 实践案
腾讯云开发者
2023/02/13
1.2K0
春节保卫战:腾讯百万 QPS 线上环境云压测方案解析
框架设计杂谈(一)
框架设计是指在软件开发中,为了实现某种功能或解决某种问题,设计出一套通用的解决方案,以便在多个项目中复用。框架设计的目的是提高开发效率、降低开发成本、提高软件质量和可维护性。
明志德道
2023/10/21
3180
软件高可用实践那些事儿
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!
京东技术
2023/08/22
2490
软件高可用实践那些事儿
100+次演练验证:酷家乐如何打造高效的自动化演练平台?
酷家乐自某次故障后开始升级演练平台,旨在提高系统在面对真实故障时的应急响应效率。面对业务线真实场景演练中高达39%的人工验证比例这一瓶颈,酷家乐构建了自动化流水线,设计了针对性的自动化用例,并选择了合适的自动化框架,确立了清晰的自动化流程。这些措施显著提升了自动验证效率,2023年第三季度演练次数超过100次,展现了自动化演练平台在提升系统稳定性和可靠性方面的显著成效。详细的解决策略和方法,请参阅文章正文。
TakinTalks稳定性社区
2024/04/15
2200
100+次演练验证:酷家乐如何打造高效的自动化演练平台?
万字详解高可用架构设计
系统高可用是一个宏大的命题,从设计思想、架构原则到工程能力、服务管理等等方方面面,每个视角单拆出来都不是一篇文章可以解决的。本文将从大局上全面系统地梳理高可用系统架构,起到一个提纲挈领的作用。
腾讯云开发者
2025/01/07
1.4K0
万字详解高可用架构设计
智慧医疗实践
02 微服务架构设计 微服务架构设计 以业务为中心 高内聚低耦合 高度自治 弹性设计 日志与监控 自动化 03 实时消息推送技术演进 实时消息推送技术演进 接入层负载均衡基于http七层负载均衡,从HA演进到Nginx HA支持TCP与Http协议,支持8种负载均衡策略,支持通过URL健康检测,支持心跳检测,工作在网络4层和7层,但对ws协议支持不好,造成ws消息堆积 Nginx支持Http协议,工作在网络7层,支持WebSocket协议,支持通过端口健康检测,支持强大的正则匹配规则 Nginx分流: se
大发明家
2021/12/17
4300
换个角度聊系统稳定性建设
对于任何系统来说,系统稳定性都是最基本的一个要求,只不过每个项目都有其发展周期,每个周期都有其主要的发展目标,比如业务爆发初期我们要求业务快速迭代,业务发展中期我们可能更多的是要求精细化运营、精细化治理,业务发展后期我们主要围绕于降本增效做事情,但是系统稳定性基本是贯穿整个项目发展周期。而且我们未来是要做SaaS产品的,稳定性更是SaaS的基石。
春哥大魔王
2020/12/08
1.5K0
换个角度聊系统稳定性建设
服务器又崩了?深度解析高可用架构的挑战和实践
导读 本文是腾讯云微服务平台TSF的产品经理刘阎同学的产品分享,这次分享紧紧贴近目前企业面临的问题,对于服务器异常,业务流量激增提出高效的解决方案。然后从微服务架构挑战,微服务设计,高可用最佳实践这三个方面逐渐深入。  刘阎  腾讯云产品经理 5年ToB产品策划以及中间件开发工作经验 熟悉微服务、容器、Devops等产品,对分布式系统容灾架构设计具有丰富的实践经验 “ 大家好,我是腾讯微服务平台TSF 产品经理刘阎,目前主要负责TSF高可用能力建设及演进规划工作,本次分享我会结合自己对微服
腾讯云中间件团队
2021/07/15
8700
程序员进阶架构师路线
作者简介:曾任职于阿里巴巴,每日优鲜等互联网公司,任技术总监,15年电商互联网经历。
用户7927337
2020/11/04
9060
程序员进阶架构师路线
日均服务调用超65万亿!腾讯是怎么做云原生微服务治理的?
云原生时代,越来越多的企业借助于微服务与容器化,来提升业务弹性与研发效率。在服务治理的道路上,我们也吸取各家之所长打磨了相关的产品。本次分享以腾讯微服务架构建设为主,介绍了 TCS/TSF、北极星(PolarisMesh)和微服务治理方面的实践经验,以及在企业的相关落地案例。
腾讯云开发者
2024/12/03
7690
日均服务调用超65万亿!腾讯是怎么做云原生微服务治理的?
推荐阅读
相关推荐
聊一聊接口测试需要关注的点有哪些?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档