前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习系列--贝叶斯分类算法

机器学习系列--贝叶斯分类算法

作者头像
Dlimeng
发布2023-06-29 16:28:30
1620
发布2023-06-29 16:28:30
举报
文章被收录于专栏:开源心路

简介

贝叶斯分类算法是一大类分类算法的总称

贝叶斯分类算法以样本可能属于某类的概率来作为分类依据

朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性

此处要想真正理解,需要有概率论的基础知识

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立

P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

算法

如果一个事物在一些属性条件发生的情况下,事物属于A的概率大于属于B的概率,则判定事物属于A

公式

步骤

1、分解各类先验样本数据中的特征

2、计算各类数据中,各特征的条件概率

(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)

3、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)

4、计算各特征的各条件概率的乘积,如下所示:

判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....

判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....

判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....

5、结果中的最大值就是该样本所属的类别

代码

object NaiveBayes {   /**     * 先验数据     */   def dataSet(): (Array[Array[String]], Array[Int]) ={     val dataList = Array(Array("my", "dog", "has", "flea", "problems", "help", "please"),       Array("maybe", "not", "take", "him", "to", "dog", "park", "stupid"),       Array("my", "dalmation", "is", "so", "cute", "I", "love", "him"),       Array("stop", "posting", "stupid", "worthless", "garbage"),       Array("mr", "licks", "ate", "my", "steak", "how", "to", "stop", "him"),       Array("quit", "buying", "worthless", "dog", "food", "stupid"))     //分类     val dataType=Array(0, 1, 0, 1, 0, 1)     (dataList,dataType)   }

  /**     * 设置分类     * @param dataList 数据集合     * @param inputSet 输入类型     */   def setWordsType(dataList:Array[String],inputSet:Array[String]): Array[Int] ={     /***       *  先验数据       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *       *       */     val returnList=new Array[Int](dataList.length)     val dataIndex = dataList.zipWithIndex     for(word <- inputSet){       if(dataList.contains(word)){         //println(dataIndex.filter(_._1 == word).toBuffer)         //与inputSet数据相等的为1         returnList(dataIndex.filter(_._1 == word)(0)._2) = 1       }else {         println("the word: %s is not in my Vocabulary!\n",word)       }     }     returnList   }

  /**     * 先验数据     * @param trainData 训练数据     * @param trainType 训练类型     */   def trainSet(trainData:Array[Array[Int]],trainType:Array[Int]): (Array[Double], Array[Double], Double) ={     /**       * 0 = {int[32]@797}       * 1 = {int[32]@798}       * 2 = {int[32]@799}       * 3 = {int[32]@800}       * 4 = {int[32]@801}       * 5 = {int[32]@802}       *       *  ArrayBuffer(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)       *  ArrayBuffer(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *       */     val trainLength=trainData.length     val wordsNum=trainData(0).length     //每个分类的概率,这里分类只有0/1,所以只返回一个类别1的概率     val pType=trainType.sum/trainLength.toDouble     var p0Num=Array.fill(wordsNum)(1)     var p1Num=Array.fill(wordsNum)(1)

    var p0Denom = 2.0     var p1Denom = 2.0

    /**       * for 循环 0~5       * p0Denom:2.0         p1Denom:2.0         p0Denom:9.0         p1Denom:2.0         p0Denom:9.0         p1Denom:10.0         p0Denom:17.0         p1Denom:10.0         p0Denom:17.0         p1Denom:15.0         p0Denom:26.0         p1Denom:15.0       */     for (i <- 0 until trainLength) {

      if (trainType(i) == 1) {         var cnt = 0         //         p1Num = p1Num.map { x =>           val v = x + trainData(i)(cnt)           cnt += 1           v         }         p1Denom += trainData(i).sum       } else {         var cnt = 0         p0Num = p0Num.map { x =>           val v = x + trainData(i)(cnt)           cnt += 1           v         }         p0Denom += trainData(i).sum       }     }     /**       * p1Num       * ArrayBuffer(2, 2, 3, 3, 2, 4, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1)       * p1Denom 21.0       *       * p0Num       * ArrayBuffer(1, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2)       * p0Denom 26.0       */     (p1Num.map(x => Math.log(x / p1Denom)), p0Num.map(x => Math.log(x / p0Denom)), pType)

  }

  def classifyNB(vec2Classify: Array[Int], p0Vec: Array[Double], p1Vec: Array[Double], pClass1: Double): Int = {     var cnt = 0     val p1 = vec2Classify.map { x =>       val v = x * p1Vec(cnt)       cnt += 1       v     }.sum + math.log(pClass1)     cnt = 0     val p0 = vec2Classify.map { x =>       val v = x * p0Vec(cnt)       cnt += 1       v     }.sum + math.log(1.0 - pClass1)     //log(p(w/c0)p(c0))=log(p(w/c0))+log(p(c0))= sum(vec2Classify * p0Vec) + log(1.0 - pClass1)     if (p1 > p0) 1 else 0   }

  def main(args: Array[String]): Unit = {     val DataSet = dataSet()     val listOPosts = DataSet._1     val listClasses = DataSet._2     val myVocabList = listOPosts.reduce((a1, a2) => a1.++:(a2)).distinct     /**       * myVocabList的数据       * ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       */     var trainMat = new ArrayBuffer[Array[Int]](listOPosts.length)     listOPosts.foreach(postinDoc => trainMat.append(setWordsType(myVocabList, postinDoc)))

    //训练集     val p = trainSet(trainMat.toArray, listClasses)     val p0V = p._2     val p1V = p._1     val pAb = p._3     val testEntry = Array("love", "my", "dalmation")     val thisDoc = setWordsType(myVocabList, testEntry)     println(testEntry.mkString(",") + " classified as: " + classifyNB(thisDoc, p0V, p1V, pAb))     val testEntry2 = Array("stupid", "garbage")     val thisDoc2 = setWordsType(myVocabList, testEntry2)     println(testEntry2.mkString(",") + " classified as: " + classifyNB(thisDoc2, p0V, p1V, pAb))   } }

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-09-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
  • 贝叶斯分类算法是一大类分类算法的总称
  • 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据
  • 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种
  • 注:朴素的意思是条件概率独立性
  • 此处要想真正理解,需要有概率论的基础知识
  • P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
  • P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)
  • 算法
  • 如果一个事物在一些属性条件发生的情况下,事物属于A的概率大于属于B的概率,则判定事物属于A
  • 公式
  • 步骤
  • 1、分解各类先验样本数据中的特征
  • 2、计算各类数据中,各特征的条件概率
  • (比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)
  • 3、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)
  • 4、计算各特征的各条件概率的乘积,如下所示:
  • 判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....
  • 判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....
  • 判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....
  • 5、结果中的最大值就是该样本所属的类别
  • 代码
  • object NaiveBayes {   /**     * 先验数据     */   def dataSet(): (Array[Array[String]], Array[Int]) ={     val dataList = Array(Array("my", "dog", "has", "flea", "problems", "help", "please"),       Array("maybe", "not", "take", "him", "to", "dog", "park", "stupid"),       Array("my", "dalmation", "is", "so", "cute", "I", "love", "him"),       Array("stop", "posting", "stupid", "worthless", "garbage"),       Array("mr", "licks", "ate", "my", "steak", "how", "to", "stop", "him"),       Array("quit", "buying", "worthless", "dog", "food", "stupid"))     //分类     val dataType=Array(0, 1, 0, 1, 0, 1)     (dataList,dataType)   }
  •   /**     * 设置分类     * @param dataList 数据集合     * @param inputSet 输入类型     */   def setWordsType(dataList:Array[String],inputSet:Array[String]): Array[Int] ={     /***       *  先验数据       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *  ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       *       *       */     val returnList=new Array[Int](dataList.length)     val dataIndex = dataList.zipWithIndex     for(word <- inputSet){       if(dataList.contains(word)){         //println(dataIndex.filter(_._1 == word).toBuffer)         //与inputSet数据相等的为1         returnList(dataIndex.filter(_._1 == word)(0)._2) = 1       }else {         println("the word: %s is not in my Vocabulary!\n",word)       }     }     returnList   }
  •   /**     * 先验数据     * @param trainData 训练数据     * @param trainType 训练类型     */   def trainSet(trainData:Array[Array[Int]],trainType:Array[Int]): (Array[Double], Array[Double], Double) ={     /**       * 0 = {int[32]@797}       * 1 = {int[32]@798}       * 2 = {int[32]@799}       * 3 = {int[32]@800}       * 4 = {int[32]@801}       * 5 = {int[32]@802}       *       *  ArrayBuffer(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)       *  ArrayBuffer(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *  ArrayBuffer(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)       *       */     val trainLength=trainData.length     val wordsNum=trainData(0).length     //每个分类的概率,这里分类只有0/1,所以只返回一个类别1的概率     val pType=trainType.sum/trainLength.toDouble     var p0Num=Array.fill(wordsNum)(1)     var p1Num=Array.fill(wordsNum)(1)
  •     var p0Denom = 2.0     var p1Denom = 2.0
  •     /**       * for 循环 0~5       * p0Denom:2.0         p1Denom:2.0         p0Denom:9.0         p1Denom:2.0         p0Denom:9.0         p1Denom:10.0         p0Denom:17.0         p1Denom:10.0         p0Denom:17.0         p1Denom:15.0         p0Denom:26.0         p1Denom:15.0       */     for (i <- 0 until trainLength) {
  •       if (trainType(i) == 1) {         var cnt = 0         //         p1Num = p1Num.map { x =>           val v = x + trainData(i)(cnt)           cnt += 1           v         }         p1Denom += trainData(i).sum       } else {         var cnt = 0         p0Num = p0Num.map { x =>           val v = x + trainData(i)(cnt)           cnt += 1           v         }         p0Denom += trainData(i).sum       }     }     /**       * p1Num       * ArrayBuffer(2, 2, 3, 3, 2, 4, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1)       * p1Denom 21.0       *       * p0Num       * ArrayBuffer(1, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2)       * p0Denom 26.0       */     (p1Num.map(x => Math.log(x / p1Denom)), p0Num.map(x => Math.log(x / p0Denom)), pType)
  •   }
  •   def classifyNB(vec2Classify: Array[Int], p0Vec: Array[Double], p1Vec: Array[Double], pClass1: Double): Int = {     var cnt = 0     val p1 = vec2Classify.map { x =>       val v = x * p1Vec(cnt)       cnt += 1       v     }.sum + math.log(pClass1)     cnt = 0     val p0 = vec2Classify.map { x =>       val v = x * p0Vec(cnt)       cnt += 1       v     }.sum + math.log(1.0 - pClass1)     //log(p(w/c0)p(c0))=log(p(w/c0))+log(p(c0))= sum(vec2Classify * p0Vec) + log(1.0 - pClass1)     if (p1 > p0) 1 else 0   }
  •   def main(args: Array[String]): Unit = {     val DataSet = dataSet()     val listOPosts = DataSet._1     val listClasses = DataSet._2     val myVocabList = listOPosts.reduce((a1, a2) => a1.++:(a2)).distinct     /**       * myVocabList的数据       * ArrayBuffer(quit, buying, worthless, dog, food, stupid, mr, licks, ate, my, steak, how, to, stop, him, posting, garbage, dalmation, is, so, cute, I, love, maybe, not, take, park, has, flea, problems, help, please)       */     var trainMat = new ArrayBuffer[Array[Int]](listOPosts.length)     listOPosts.foreach(postinDoc => trainMat.append(setWordsType(myVocabList, postinDoc)))
  •     //训练集     val p = trainSet(trainMat.toArray, listClasses)     val p0V = p._2     val p1V = p._1     val pAb = p._3     val testEntry = Array("love", "my", "dalmation")     val thisDoc = setWordsType(myVocabList, testEntry)     println(testEntry.mkString(",") + " classified as: " + classifyNB(thisDoc, p0V, p1V, pAb))     val testEntry2 = Array("stupid", "garbage")     val thisDoc2 = setWordsType(myVocabList, testEntry2)     println(testEntry2.mkString(",") + " classified as: " + classifyNB(thisDoc2, p0V, p1V, pAb))   } }
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档