Loading [MathJax]/jax/output/CommonHTML/jax.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >大学生数学竞赛非数专题二(5)

大学生数学竞赛非数专题二(5)

作者头像
用户9628320
发布于 2022-11-23 08:47:56
发布于 2022-11-23 08:47:56
3720
举报

专题二 一元微分学(5)

2.5 麦克劳林公式以及泰勒公式的应用

知识点

(1)假设函数

的某一领域

接可导,则

称上式为

阶泰勒公式,

为其余项。

或者

其中

内,将

式称为拉格朗日余项,将

称为皮亚若余项。

(2)假设函数

的某一领域

接可导,则

则有

将上式称为

的麦克劳林公式。

(3). 常见几个函数的一些麦克劳林公式

--- > 例2.25 (**江苏省2004年竞赛题**) > > 当

时,

是等价无穷小,求

. **解**:首先根据三角函数和差化积公式,有

,所以

所以当

时,原式

,则

例2.26 (全国大学生2016年决赛题) 求极限

:首先根据函数

的马克劳林展开式,取

,有

,则

由此可知,

为奇数,

为偶数,于是


例2.27 (莫斯科电子技术学院1997年竞赛题) 求

:根据等价无穷小,当

时,有

,所以

因此原式

例2.28 (全国大学生2012决赛题) 求

:先展开,则原式

再令

,则原式

例2.29(北京市1999年竞赛题) 设

具有连续的二阶导数,且

,求

,以及

:首先取对数,

,有

,所以

显然

,由

所以

,再由麦克劳林公式有

,所以

,所以

,则

例2.30 (全国大学生2011年决赛题)设函数

处的某领域具有二阶连续导数,且

均不为

,证明:存在唯一的一组实数

使得

:根据马克劳林公式,有

分,别带入

,带入得

则有

根据克莱姆法则,得

今天的题目就到这里了,这几个题目利用麦克劳林公式以及泰勒展开,综合运用,大家自己好好体验。有问题留言!

作者:小熊

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-12-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 灰灰的数学与机械世界 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
大学生非数竞赛专题四 (2)
非数竞赛专题四 多元积分学 (2) 4.2 交换二重积分的次序 4.5 (北京市1994年竞赛题) 设 f(x,y) 是定义在区域 0 \leq x \leq 1,0 \leq y \leq 1 上的二元函数, f(0,0)=0 ,且在 (0,0) 处 f(x,y) 可微,求极限 \lim\limits_{x\rightarrow 0^{+}} \frac{\displaystyle\int_{0}^{x^2}dt\int_{x}^{\sqrt{t}}f(t,u)du}{1-e^{-\frac{x^2}
用户9628320
2022/11/23
2540
大学生非数竞赛专题二 (4)
专题二 一元微分学 (4) 有关微分中值定理的证明题 知识点: 定理一:(费马引理) 假设函数 f(x) 在 x=a 的某领域有定义,而 f(a) 是函数的 最大值或者最小值,且函数可导,则有 f^{'}(a)=0 ; 定理二:(罗尔定理) 假设函数 f(x) 在 [a,b] 连续,在 (a,b) 上可导,且 f(z)=f(b) ,则 \exists \xi(a,b) 内,使得 f^{'}(\xi)=0 ; 定理三:(拉格朗日中值定理) 假设函数 f(x) 在 [a,b] 连续,在 (a,b) 上可导
用户9628320
2022/11/23
3220
大学生数学竞赛非数专题四(4)
专题四 多元函数积分学 (4) 4.4 与重积分有关的不等式证明问题 ---- 4.9 (清华大学1985年竞赛题) 设函数 f(x) 在 [0,1] 上连续且单调递减,又 f(x) > 0 ,求证: \frac{\displaystyle\int_{0}^{1}xf^{2}(x)dx}{\displaystyle \int_{0}^{1}xf(x)dx}\leq \frac{\displaystyle\int_{0}^{1}f^{2}(x)dx}{\displaystyle \int_{0}^{1}f(
用户9628320
2022/11/14
3410
非数竞赛专题三(4)
今天的题目就到这里了,这两题综合利用了极限的定义,以及积分中值定理,另外还有放缩法,综合性强,大家好好体验,有问题留言,谢谢大家的支持。
用户9628320
2022/11/23
3020
大学生数学竞赛非数专题一(5)
专题一 函数与极限 (5) 1.2.5 利用等价无穷小因子 几个常见的等价无穷小 常见的几个: \Delta\rightarrow 0,\Delta -\sin\Delta-\arcsin \Delta-\tan\Delta-\arctan\Delta-\ln(1+\Delta)-e^{\Delta}-1 (1+\Delta)^{\lambda}-1-\lambda \Delta,1-\cos\Delta-\dfrac{1}{2}\Delta^{2} 例1.19 (莫斯科高等技术学校1977年竞赛题)
用户9628320
2022/11/23
2960
大学生非数竞赛专题三 (7)
非数专题三 一元积分学 (7) 3.7 定积分不等式的证明 3.20 (浙江省2011年数学竞赛题) 设 f(x) 在 [0,1] 连续,且 -a \leq f(x) \leq b ,同时 \displaystyle \int_{0}^{1}f^{2}(x)dx=ab ,证明: \displaystyle 0 \leq \frac{1}{b-a}\int_{0}^{1}f(x)dx \leq \frac{1}{4}\left(\frac{a+b}{a-b}\right)^2 【解析】:由 -a \le
用户9628320
2022/11/23
2980
大学生数学竞赛非数专题二(7)
1单调性 2极值 3最值 4凹凸性、拐点 5作函数图像 6渐近线:水平渐近线、铅直渐近线、斜渐近线
用户9628320
2022/11/23
3760
大学生数学竞赛非数专题一(7)
定理2:初等函数在有定义的区间均是连续的 补充一下:闭区间连续函数的几个性质
用户9628320
2022/11/23
3450
大学生数学竞赛非数专题一(3)
有问题的可以找小编,前面四个题目均是应用夹逼定理来做题,后面两个是关于单调有界来做题。
用户9628320
2022/11/23
4230
大学生数学竞赛非数专题三(5)
专题三 一元积分学 (5) 3.5 变限积分的应用 知识点:变限积分的几个公式 3.14 (南京大学1995年竞赛题) 求 \displaystyle\underset{x\rightarrow \infty}{\lim}\sqrt{x}\int_{x}^{x+1}\frac{dt}{\sqrt{t+\sin t+x}} . 解:根据积分的放缩,有 \displaystyle\int_{x}^{x+1}\dfrac{dt}{\sqrt{t+\sin t+x}}\leq \int_{x}^{x+1}\df
用户9628320
2022/11/23
4050
大学生非数竞赛专题四 (3)
非数专题四 多元函数积分学 (3) 4.3 三重积分的计算 4.8 (南京大学1993年竞赛题) 求 \displaystyle \underset{\Omega}{\iiint}\sqrt{x^2+y^2}dxdydz ,其中 \Omega 是由曲面 z=\sqrt{x^2+y^2} , z=\sqrt{1-x^2-y^2} 所围成的立体 【解析】:可以利用球坐标或者柱坐标进行求解 【法一】:利用球坐标,令 x=r\sin\varphi\cos \theta , y=r\sin\varphi\sin\t
用户9628320
2022/11/23
4340
大学生数学竞赛非数专题四(5)
专题四 多元函数积分学 (5) 4.5 曲线积分的计算 ---- 4.14 (江苏省2016年竞赛题) 设 \varGamma 为曲线 y=2^x+1 上从点 A(0,2) 到点 B(1,3) 的一段弧,试着求曲线积分 \displaystyle \int_{\varGamma}e^{xy}(1+xy)dx+e^{xy}x^2dy 【解析】:可以采用曲线积分与路径无关或者直接计算法 【法一】:记 P=e^{xy}(1+xy) , Q=e^{xy}x^2 , \dfrac{\partial Q}{\par
用户9628320
2022/11/14
4250
大学生数学竞赛非数专题二(1)
今天的题目都比较有趣,都是一些常见的套路,证明可导一般要用到连续,而证明导数的存在更重要的是解决左右导数的问题,同时对于极限的求法又是一个关键点。大家可以仔细看看,有问题留言!谢谢
用户9628320
2022/11/23
3740
大学生数学竞赛非数专题一(8)
今天的题目就到这里了,关于介值定理以及零点定理都是常见的套路,一般证明唯一的话,再加上一个单调性就可以,其次证明极限用夹逼准则,注意放缩法的应用,注意左右夹逼的同一性,这个要进行练习。其次还有极限的求法,列方程求解。单调有界准则重要证明的是单调和有界,单调一般时采用函数或者作差或者相除,再利用常见的不等式进行放缩,有界可以利用假设归纳法或者函数法,求它的值的范围。
用户9628320
2022/11/23
3550
非数竞赛专题三(3)
专题三 一元积分学 (3) 3.3 利用定积分的定义求极限 3.9 (莫斯科钢铁与合金学院1976年竞赛题) 求 \underset{n\rightarrow \infty}{\lim}[\frac{2^{\frac{1}{n}}}{n+1}+\frac{2^{\frac{2}{n}}}{n+\frac{1}{2}}+\dotsb+\frac{2^\frac{n}{n}}{n+\frac{1}{n}}] 解:首先令 x_{n}=\frac{2^{\frac{1}{n}}}{n+1}+\fr
用户9628320
2022/11/23
3290
非数竞赛专题二 (7)
专题二 一元微分学 (7) 2.2.7 导数在几何上的应用 1单调性 2极值 3最值 4凹凸性、拐点 5作函数图像 6渐近线:水平渐近线、铅直渐近线、斜渐近线 2.34 (江苏省2012年竞赛题) 求一个次数最低的多项式 P(x) ,使得它在 x=1 时取极大值 2 ,且 (0,2) 是曲线 y=P(x) 的拐点。 解:设 P^{''}(x)=a(x-2) ,积分一次可得 P^{'}(x)=a\frac{x^2}{2}-2x)+b , 再积分一次,得 P(x)=a(\frac{x^3}{6}-x^2
用户9628320
2022/11/23
5340
大学生数学竞赛非数专题一(4)
有问题的可以找小编。这几个题比较简单,主要就是重要极限的构造问题,希望大家好好体会。
用户9628320
2022/11/23
3580
大学生非数竞赛专题四 (1)
非数专题四 多元函数积分学(1) 4.1 二重积分的计算 4.1 (浙江省2001年竞赛题) 计算 \displaystyle \underset{\sqrt{x}+\sqrt{y} \leq 1}{\iint}\sqrt[3]{\sqrt{x}+\sqrt{y}}dxdy . 【解析】:化为先对 y 后 x 的二次积分,有 \begin{align*}\displaystyle \underset{\sqrt{x}+\sqrt{y} \leq 1}{\iint}\sqrt[3]{\sqrt{x}+\s
用户9628320
2022/11/23
6380
大学生数学竞赛非数专题三(6)
专题三 一元积分学 (6) 3.6 定积分的计算 3.17(江苏省2008年竞赛题) 求 \displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{2}x\cos^{2}xdx 【解析】:利用降幂公式以及倍角公式,有 \begin{align*}\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{2}x\cos^{2}xdx&=\dfrac{1}{4}\int_{0}^{\frac{\pi}{2}}(\sin2x)^{2}\frac{1+\c
用户9628320
2022/11/23
4390
非数竞赛专题三(5)
非数专题三 一元积分学 (5) 3.5 变限积分的应用 知识点:变限积分的几个公式 3.14 (南京大学1995年竞赛题) 求 \underset{x\rightarrow \infty}{\lim}\sqrt{x}\int_{x}^{x+1}\frac{dt}{\sqrt{t+\sin t+x}} . 解:根据积分的放缩,有 \int_{x}^{x+1}\frac{dt}{\sqrt{t+\sin t+x}}\leq \int_{x}^{x+1}\frac{dt}{\sqrt{x-1+x}}=\fra
用户9628320
2022/11/23
4420
推荐阅读
相关推荐
大学生非数竞赛专题四 (2)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档