备注:研究方向+地点+学校/公司+昵称,更快通过申请,长按加细分领域技术交流群,目前有细分领域:图像分割、图像目标检测、论文写作、车道检测、模型优化、目标跟踪、SLAM、点云处理(分割检测)、深度学习。
论文地址: http://arxiv.org/pdf/2111.03821v1.pdf
来源: Istituto Italiano di Tecnologia
论文名称:ROFT: Real-time Optical Flow-aided 6D Object Pose and Velocity Tracking
原文作者:Nicola A. Piga
内容提要
6D目标姿态跟踪在机器人和计算机视觉领域已经得到了广泛的研究。最有前途的解决方案,利用深度神经网络和/或过滤和优化,在标准基准上表现出显著的性能。然而,据我们所知,这些还没有经过针对快速物体运动的彻底测试。在这种情况下,跟踪性能会显著下降,特别是对于那些不能实现实时性能并引入不可忽略延迟的方法。在本文中,我们介绍了ROFT,一种卡尔曼滤波方法,用于从RGB-D图像流中跟踪6D目标的姿态和速度。通过利用实时光流,ROFT同步低帧率卷积神经网络的延迟输出,例如使用RGB-D输入流进行分割和6D目标位姿估计,以实现快速、精确的6D目标位姿和速度跟踪。我们在一个新引入的逼真数据集Fast-YCB上测试我们的方法,Fast-YCB包括来自YCB模型集的快速移动对象,以及对象和手部姿态估计的数据集HO-3D上。结果表明,我们的方法优于先进的6D目标姿态跟踪方法,同时也提供6D目标速度跟踪。作为补充资料,还提供了一段演示实验的录象。
主要框架及实验结果