时间序列知识整理系列,持续更新中 ⛳️
赶紧后台回复"讨论"加入讨论组交流吧 ?
在上一篇文章中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在时间序列分析、语音识别、自然语言处理等许多领域中成功应用。
但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。
长短时记忆网络是啥
我们首先了解一下长短时记忆网络产生的背景。回顾一下【TS深度学习】循环神经网络
中推导的,误差项沿时间反向传播的公式:
我们可以根据下面的不等式,来获取
的模的上界(模可以看做对
每一项值的大小的度量):
我们可以看到,误差项
从t时刻传递到k时刻,其值的上界是
的指数函数。
分别是对角矩阵
和矩阵W模的上界。显然,除非
乘积的值位于1附近,否则,当t-k很大时(也就是误差传递很多个时刻时),整个式子的值就会变得极小(当
乘积小于1)或者极大(当
乘积大于1),前者就是梯度消失,后者就是梯度爆炸。虽然科学家们搞出了很多技巧(比如怎样初始化权重),让
的值尽可能贴近于1,终究还是难以抵挡指数函数的威力。
梯度消失到底意味着什么?在零基础入门深度学习(5) - 循环神经网络中我们已证明,权重数组W最终的梯度是各个时刻的梯度之和,即:
假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:
我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。
既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。
其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:
新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:
上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值Xt,上一时刻LSTM的输出值ht-1、以及上一时刻的单元状态Ct-1;LSTM的输出有两个:当前时刻LSTM输出值ht、和当前时刻的单元状态Ct。注意X,h,C都是向量。
LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:
接下来,我们要描述一下,输出h和单元状态c的具体计算方法。
长短时记忆网络的前向计算
前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,b是偏置项,那么门可以表示为:
门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为
(也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。
LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态Ct-1有多少保留到当前时刻Ct;另一个是输入门(input gate),它决定了当前时刻网络的输入Xt有多少保存到单元状态Ct。LSTM用输出门(output gate)来控制单元状态Ct有多少输出到LSTM的当前输出值ht。
我们先来看一下遗忘门:
上式中,Wf是遗忘门的权重矩阵,[ht-1,Xt]表示把两个向量连接成一个更长的向量,bf是遗忘门的偏置项,sigmoid函数。如果输入的维度是dx,隐藏层的维度是dh,单元状态的维度是dc,(通常dc=dh),则遗忘门的权重矩阵Wf维度是dcX(dh+dx)。事实上,权重矩阵Wf都是两个矩阵拼接而成的:一个是Wfh,它对应着输入项ht-1,其维度为dcXdh;一个是Wfx,它对应着输入项Xt,其维度为dcXdx,Wf可以写为:
下图显示了遗忘门的计算:
接下来看看输入门:
上式中,Wi是输入门的权重矩阵,bi是输入门的偏置项。下图表示了输入门的计算:
接下来,我们计算用于描述当前输入的单元状态
, 它是根据上一次的输出和本次输入来计算的:
下图是
的计算:
现在,我们计算当前时刻的单元状态ct。它是由上一次的单元状态Ct-1按元素乘以遗忘门ft,再用当前输入的单元状态
元素乘以输入门it,再将两个积加和产生的:
符号o表示按元素乘。下图是Ct的计算:
这样,我们就把LSTM关于当前的记忆
和长期的记忆Ct-1组合在一起,形成了新的单元状态Ct。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。下面,我们要看看输出门,它控制了长期记忆对当前输出的影响:
下图表示输出门的计算:
LSTM最终的输出,是由输出门和单元状态共同确定的:
下图表示LSTM最终输出的计算:
式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。
长短时记忆网络的训练
熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。
01
LSTM的训练算法框架
LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:
1、前向计算每个神经元的输出值,对于LSTM来说,即ft,it,ct,ot,ht,五个向量的值。计算方法已经在上一节中描述过了。
2、反向计算每个神经元的误差项
值。与循环神经网络一样,LSTM误差项的反向传播也是包括两个方向:一个是沿时间的反向传播,即从当前t时刻开始,计算每个时刻的误差项;一个是将误差项向上一层传播。
3、根据相应的误差项,计算每个权重的梯度。
02
关于公式和符号的说明
首先,我们对推导中用到的一些公式、符号做一下必要的说明。
接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:
从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。
LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵Wf和偏置项bf、输入门的权重矩阵Wi和偏置项bi、输出门的权重矩阵Wo和偏置项bo、以及计算单元状态的权重矩阵W和偏置项bc。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵Wf,Wi,Wc,Wo、都将被写为分开的两个矩阵:Wfh,Wfx,Wih,Wix,Woh、Wox,Wch,Wcx。
我们解释一下按元素乘o符号。当o作用于两个向量时,运算如下:
当o作用于一个向量和一个矩阵时,运算如下:
当o作用于两个矩阵时,两个矩阵对应位置的元素相乘。按元素乘可以在某些情况下简化矩阵和向量运算。例如,当一个对角矩阵右乘一个矩阵时,相当于用对角矩阵的对角线组成的向量按元素乘那个矩阵:
当一个行向量右乘一个对角矩阵时,相当于这个行向量按元素乘那个矩阵对角线组成的向量:
上面这两点,在我们后续推导中会多次用到。
在t时刻,LSTM的输出值为ht,我们定义t时刻的误差项
为:
注意,和前面几篇文章不同,我们这里假设误差项是损失函数对输出值的导数,而不是对加权输入 的导数。因为LSTM有四个加权输入,分别对应ft,it,ct,ot,我们希望往上一层传递一个误差项而不是四个。但我们仍然需要定义出这四个加权输入
,以及他们对应的误差项。
03
误差项沿时间的反向传播
沿时间反向传递误差项,就是要计算出t-1时刻的误差项
。
我们知道,
是一个Jacobian矩阵。如果隐藏层h的维度是N的话,那么它就是一个NXN矩阵。为了求出它,我们列出ht的计算公式,即前面的式6和式4:
显然,ot,ft,it,
都是ht-1的函数,那么,利用全导数公式可得:
下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:
根据式4,我们可以求出:
因为:
我们很容易得出:
将上述偏导数带入到式7,我们得到:
根据、
的定义,可知:
式8到式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:
04
权重梯度的重计算
对于Wfh,Wih,Woh,Wch的权重梯度,我们知道它的梯度是各个时刻梯度之和,我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。
我们已经求得了误差项
、很容易求出t时刻的Woh,Wih,Wfh,Wch:
将各个时刻的梯度加在一起,就能得到最终的梯度:
对于偏置项bf,bi,bc,bo的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:
下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:
对于Wfx,Wix,Wcx,Wox的权重梯度,只需要根据相应的误差项直接计算即可:
以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。
当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。
GRU
前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。
GRU对LSTM做了两个大改动:
1、将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)Zt和重置门(Reset Gate)rt.
2、将单元状态与输出合并为一个状态:h。
GRU的前向计算公式为:
下图是GRU的示意图:
GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。
小结
至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了。现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理时间序列。
但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。在下一篇文章中,我们将介绍递归神经网络和它的训练算法。现在,漫长的烧脑暂告一段落,休息一下吧:)
推荐阅读