前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >概述 | 全景图像拼接技术全解析

概述 | 全景图像拼接技术全解析

作者头像
OpenCV学堂
发布2020-10-27 10:55:39
1.9K0
发布2020-10-27 10:55:39
举报
文章被收录于专栏:贾志刚-OpenCV学堂

前言

图像/视频拼接的主要目的是为了解决相机视野(FOV-Field Of View)限制,生成更宽的FOV图像/视频场景。视频拼接在体育直播、全景显示、数字娱乐、视频处理中都被广泛应用,同时视频/图像拼接涉及到矫正图像、对其与匹配图像、融合、统一光照、无缝连接、多尺度重建等各个图像算法模型与细节处理,可以说是图像处理技术的综合运用。特别是最近几年收到深度学习的影响,各种基于深度学习的图像对齐与拼接技术也取得了长足发展。

01

图像拼接流程

图像拼接流程主要是针对输入系列视频帧或者图像,基于像素像素或者特征点相似然后对齐图像、融合对齐之后的图像,更新全景图像拼接结果,图示如下:

最常见就是基于SIFT/SURF/OBR/AKAZE等方法实现特征提取,基于RANSAC等方法实现对齐,基于图像融合或者无缝克隆算法实现对齐图像的拼接。

针对不同的拼接方式可以分为图像拼接、视频拼接、全景拼接。针对图像拼接可以分为像素相似与特征相似;视频拼接又分为固定相机、移动相机;全景拼接分为单相机、相机列阵、鱼眼相机列阵。图示如下:

02

深度学习方法

通过卷积神经网络CNN可以更好的学习与提取图像特征、通过语义分割获取初始匹配、然后对齐,图示如下:

其中IA与IB是输入图像,CNN是预训练的特征提取网络模型,匹配网络与回归网络。其中匹配网络主要是计算相似程度,其网络计算方式如下:

回归网络的结构如下:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
媒体处理
媒体处理(Media Processing Service,MPS)是智能、强大、全面的多媒体数据处理服务,行业支持最全面的音视频编码标准,基于自研编码内核和AI算法,提供音视频转码和增强、媒体智能、质检评测等能力,帮助您提升媒体质量、降低成本,满足各类场景的音视频处理需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档