前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CVPR2020 | 3D目标检测点云检测新网络 PV-RCNN

CVPR2020 | 3D目标检测点云检测新网络 PV-RCNN

作者头像
AI算法修炼营
发布2020-09-22 16:04:31
1.1K0
发布2020-09-22 16:04:31
举报
文章被收录于专栏:AI算法修炼营

简介

今天这一篇是19年12月30日放到arxiv上的,其实在CVPR2020截止后就一直在关注在关注的一篇文章,毕竟在KITTI的3D检测上高居榜首,并且远远的超过了第二名。如下:

是很有必要研读一下,这篇文章出自港中文和商汤的工作。

论文地址:https://arxiv.org/pdf/1912.13192.pdf

代码地址:https://github.com/sshaoshuai/PCDet

先看题目猜测一下,是结合了目前基于点和基于voxel的方法进行特征提取。5555,好像博主之前的一点工作也是朝着这个方向去做过,奈何太菜,没做出好的结果。

Abstract

  • 本文的特征提取方式充分利用的3D voxel卷积和基于点的pointnet卷积方式。其中作者给出的解释是3D voxel卷积高效,而point-based的方法感受野可变,因此结合了这两种检测方法的优点。
  • 该方法是一个两阶段的方法, 第一阶段提proposals,第二阶段为refine
  • 该方法远远好于KITTI其他的方法,在精度的表现上看。

一个简单的过程如下,盲猜为多尺度特征融合到key-point上的一个创新工作。

1. Introduction

  • 3D检测应用
  • 本文是一个将point_based的方法和voxel_based方法的结合的新型网络结构(在文章作者称voxel_based为grid_based的方法,实则同一种方法)
  • 一些point_based和grid_based方法的简单介绍。并且提取存在的问题。这也是作者的论文出发点,结合这两种方法的优点。(高效+可变感受野)

the grid-based methods are more computationally efficient but the inevitable information loss degrades the finegrained localization accuracy, while the point-based methods have higher computation cost but could easily achieve larger receptive field by the point set abstraction

  • PV-RCNN为结合这两种方法的算法,采用multi-scale的方法获得由voxel_based方法得到的高质量的proposals,然后再利用Point_based的方法获得精细的局部信息。

The principle of PV-RCNN lies in the fact that the voxel-based operation efficiently encodes multi-scale feature representations and can generate high-quality 3D proposals.

  • 核心也就是如何将上述的两种方法有效的结合起来,这里作者的做法是:在每一个3D proposals内平均的采样一些Grid-point,然后再通过P2的FPS最远点采样的方法得到该Grid_point周围的点,再通过结合去进一步refine最后的proposals
  • 因此,作者采用两阶段的方法去更好的结合上述的两种算法的优点。

(1) 第一阶段为:“voxel-to-keypoint scene encoding step ”,这一步是提出proposals,作者首先对整个场景采用voxel的方法进行特征提取,同时采取一支分支对场景采用point的FPS采样,然后检索得到多尺度的voxel的特征,如下的表示。这样实际上仅仅是采用了voxel的特征,但是表示在key-point身上。

(2)第二阶段为‘keypoint-to-grid RoI feature abstraction’:这一步骤,作者提出了一个新的RoI-grid pooling module,该模块将上一步骤的keypoints的特征和RoI-grid points特特征融合(keypoints和RoI-grid points是什么内容后续会讲到)

  • contributions

2. Related Work

这一部分不细讲,基本上的文章都大差不差。如下内容

  • 3D Object Detection with Grid-based Methods.
  • 3D Object Detection with Point-based Methods.
  • Representation Learning on Point Clouds.

3. PV-RCNN for Point Cloud Object Detection

3.1. 3D Voxel CNN for Efficient Feature Encoding and Proposal Generation

  • 3D voxel CNN
  • 3D proposal generation

上面的两点内容大都和其他目前流行的基于voxel的方法一样,不多赘述。

  • Discussions

(1)目前大多精度高的工作都采用了refine优化的工作,这里作者提出两个问题,如果采用类似roi_pooling的方式去做,那么由于8倍的下采样会使得分辨率很低,此外如果采样得到的是较高的分辨率图片又会得到稀疏的表示(Fast-PointRCNN)。第二个问题是传统的ROI-POOLING和ROI-ALIGN实际上得到仅能在一个小的区域内进差值,因此如果在3D稀疏的表达上可能得到几乎都是0的特征表示。(2)进一步的,P2提出的set-abstruction的操作很好的编码“可变”领域的特征,后续考虑到去voxel上差值的内存占用,作者提出了先提出关键点,然后再利用关键点编码voxel卷积过程的多尺度特征。

3.2. Voxel-to-keypoint Scene Encoding via Voxel Set Abstraction

  • Keypoints Sampling

采用FPS,对KITTI数据集的关键点个数为2048,对waymo数据集为4096个点。用于代表整个场景的特征信息。

  • Voxel Set Abstraction Module

作者自行设计了Voxel Set Abstraction (VSA) module这样的一个模块,这个模块的作用是将keypoint周围非空的voxel特征采集出来结合在一起,原文用了很多数学表达,含义大致如此。

  • Extended VSA Module

进一步的在二维上,采用的是双线性插值得到关键点投影到BEV上的特征。最终的特征将有三部分组成,分别是来自voxel语义信息, 来自原始点云的特征信息(作者说这一部分信息是为了弥补之前在voxel化时丢失的信息),来自BEV的高级信息.

  • Predicted Keypoint Weighting.

(1)上述的特征融合实际上都是为了进一步的refine做准备,第一阶段的proposals实际上是由voxel-based的方法提出来的,这一步 Keypoint Weighting的工作是为了给来自背景和前景的关键点一个不一样的权重,使得前景对refine的贡献更大。(2)为了做这样的一个工作,作者设计了如下的额为的网络结构。这里面的Label对应的是是否在gt内,采用fcoal_loss。

3.3 Keypoint-to-grid RoI Feature Abstraction for Proposal Refinement

这就是作者提出的第二阶段,refinement,前文提到通过3D稀疏卷积处理voxel已经得到了比较好的精度的proposals,但是多尺度的keypoint的特征是为了进一步refine结果。因此作者在这个阶段提出了keypoint-to-grid RoI feature abstraction模块。如下:

(1)从该模块名称和图就可以看得出来,作者是想通过将key-point的特征整合到grid-point中去,并且也采用了multi-scale的策略。作者在每个proposals中都采样个grid points. (2)首先确定每一个grid-point的一个半径下的近邻,然后再用一个pointnet模块将特征整合为grid_point的特征,这里会采用多个scale的特征融合手段。(3)得到了所有的grid-point的点特征后,作者采用两层的MLP得到256维度的proposals的特征。

  • 3D Proposal Refinement and Confidence Prediction 作者在confidence prediction branche 这一分支上采用了前人提出的 3D Intersection-over-Union (IoU),对于第k个ROI的置信度的目标是如下公式:
y_{k}=\min \left(1, \max \left(0,2 \operatorname{IoU}_{k}-0.5\right)\right)

该公式中表示第k个ROI对应的GT,因此confidence prediction branche的LOSS函数采用的是交叉熵loss:

L_{\mathrm{iou}}=-y_{k} \log \left(\tilde{y}_{k}\right)-\left(1-y_{k}\right) \log \left(1-\tilde{y}_{k}\right)

是预测的置信度的分数,如下的实验表明采用这种置信度是能提高算法的精度的。

3.4. Training losses

  • RPN loss
L_{\mathrm{rpn}}=L_{\mathrm{cls}}+\beta \sum_{\mathrm{r} \in\{x, y, z, l, h, w, \theta\}} \mathcal{L}_{\mathrm{smooth}}\left(\widehat{\Delta \mathrm{r}^{a}}, \Delta \mathrm{r}^{a}\right)
  • keypoint seg loss也就是前背景关键点的权重loss。
  • refinement loss 定义如下:
L_{\mathrm{rann}}=L_{\mathrm{iou}}+\sum_{\mathrm{r} \in\{x, y, z, l, h, w, \theta\}} \mathcal{L}_{\mathrm{smooth}}\left(\widehat{\Delta \mathrm{r}^{p}}, \Delta \mathrm{r}^{p}\right)

这里的两部分loss第一个置信度LOSS也就是前文提出的LOSS,后面的SmoothL1 LOSS和以前的一样。

4. Experiments

有一些参数设置和实验的实现细节,博主就不写下来了。原文很详尽。列出实验效果吧。在test的数据集上:几乎都好比第二名好几个点,真的牛。

在watmo上如下:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法修炼营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Abstract
  • 1. Introduction
  • 2. Related Work
  • 3. PV-RCNN for Point Cloud Object Detection
    • 3.1. 3D Voxel CNN for Efficient Feature Encoding and Proposal Generation
      • 3.2. Voxel-to-keypoint Scene Encoding via Voxel Set Abstraction
        • 3.3 Keypoint-to-grid RoI Feature Abstraction for Proposal Refinement
          • 3.4. Training losses
          • 4. Experiments
          相关产品与服务
          图像处理
          图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档