Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >JUC线程池扩展可回调的Future

JUC线程池扩展可回调的Future

作者头像
Throwable
发布于 2020-06-23 08:22:52
发布于 2020-06-23 08:22:52
86100
代码可运行
举报
文章被收录于专栏:Throwable's BlogThrowable's Blog
运行总次数:0
代码可运行

前提

最近在看JUC线程池java.util.concurrent.ThreadPoolExecutor的源码实现,其中了解到java.util.concurrent.Future的实现原理。从目前java.util.concurrent.Future的实现来看,虽然实现了异步提交任务,但是任务结果的获取过程需要主动调用Future#get()或者Future#get(long timeout, TimeUnit unit),而前者是阻塞的,后者在异步任务执行时间不确定的情况下有可能需要进行轮询,这两种情况和异步调用的初衷有点相违背。于是笔者想结合目前了解到的Future实现原理的前提下扩展出支持(监听)回调的Future,思路上参考了Guava增强的ListenableFuture。本文编写的时候使用的JDK是JDK11,代码可以在JDK[8,12]版本上运行,其他版本可能不适合。

简单分析Future的实现原理

虚拟例子推演

并发大师Doug Lea在设计JUC线程池的时候,提供了一个顶层执行器接口Executor

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface Executor {

    void execute(Runnable command);
}    

实际上,这里定义的方法Executor#execute()是整套线程池体系最核心的接口,也就是ThreadPoolExecutor定义的核心线程、额外创建的线程(线程池最大线程容量 - 核心线程数)都是在这个接口提交任务的时候懒创建的,也就是说ExecutorService接口扩展的功能都是基于Executor#execute()的基础进行扩展。Executor#execute()方法只是单纯地把任务实例Runnable对象投放到线程池中分配合适的线程执行,但是由于方法返回值是void类型,我们是无法感知任务什么时候执行完毕。这个时候就需要对Runnable任务实例进行包装(下面是伪代码 + 伪逻辑):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
// 下面这个Wrapper和Status类是笔者虚构出来
@RequiredArgsConstructor
class Wrapper implements Runnable{

    private final Runnable target;
    private Status status = Status.of("初始化");

    @Override
    public void run(){
        try{
           target.run();
           status = Status.of("执行成功");
        }catch(Throwable t){
           status = Status.of("执行异常"); 
        }
    }
}

我们只需要把new Wrapper(原始Runnable实例)投放到线程池执行,那么通过定义好的Status状态记录变量就能得知异步任务执行的状态,以及什么时候执行完毕(包括正常的执行完毕和异常的执行完毕)。这里仅仅解决了任务执行的状态获取,但是Executor#execute()方法法返回值是void类型的特点使得我们无法回调Runnable对象执行的结果。这个时候需要定义一个可以回调执行结果的接口,其实已经有现成的接口Callable

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@FunctionalInterface
public interface Callable<V> {

    V call() throws Exception;
}    

这里遇到了一个问题:由于Executor#execute()只接收Runnable参数,我们需要把Callable接口适配到Runnable接口,这个时候,做一次简单的委托即可:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RequiredArgsConstructor
class Wrapper implements Runnable{

    private final Callable callable;
    private Status status = Status.of("初始化");
    @Getter
    private Object outcome;

    @Override
    public void run(){
        try{
           outcome = callable.call();
           status = Status.of("执行成功");
        }catch(Throwable t){
           status = Status.of("执行异常"); 
           outcome = t;
        }
    }
}

这里把Callable实例直接委托给Wrapper,而Wrapper实现了Runnable接口,执行结果直接存放在定义好的Object类型的对象outcome中即可。当我们感知到执行状态已经结束,就可以从outcome中提取到执行结果。

Future的实现

上面一个小结仅仅对Future实现做一个相对合理的虚拟推演,实际上,RunnableFuture才是JUC中常用的复合接口,它同时实现了RunnableFuture

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface RunnableFuture<V> extends Runnable, Future<V> {
    
    void run();
}

上一节提到的虚构出来的Wrapper类,在JUC中类似的实现是java.util.concurrent.FutureTask,它就是CallableRunnable的适配器,FutureTask实现了RunnableFuture接口:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class FutureTask<V> implements RunnableFuture<V> {

    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;

    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;
    
    // 省略其他代码
}    

注意到核心属性state表示执行状态,outcome承载执行结果。接着看提交Callable类型任务的方法ExecutorService#submit()

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface ExecutorService extends Executor {

    // 省略其他接口方法

    <T> Future<T> submit(Callable<T> task);
}    

当我们通过上述ExecutorService#submit()方法提交Callable类型任务的时候,实际上做了如下的步骤:

  1. 检查入参task的存在性,如果为null抛出NullPointerException
  2. Callable类型的task包装为FutureTask实例。
  3. 把新建的FutureTask实例放到线程池中执行,也就是调用Executor#execute(FutureTask实例)
  4. 返回FutureTask实例的接口实例RunnableFuture(实际上是返回子接口Future实例)。

如果我们需要获取结果,可以Future#get()或者Future#get(long timeout, TimeUnit unit)获取,调用这两个方法的时候参看FutureTask里面的方法实现,得知步骤如下:

  1. 如果状态state小于等于COMPLETING(1),说明任务还在执行中,获取结果的请求线程会放入WaitNode类型的队列中进行阻塞。
  2. 如果任务执行完毕,不管异常完毕还是正常完毕,除了会更新状态state和把结果赋值到outcome之外,还会唤醒所有阻塞获取结果的线程,然后调用钩子方法FutureTask#done()(具体见源码FutureTask#finishCompletion())。

其实分析了这么多,笔者想指出的结论就是:Callable类型任务提交到线程池中执行完毕(包括正常执行完毕和异常执行完毕)之后,都会回调钩子方法FutureTask#done()。这个就是我们扩展可监听Future的理论依据。

扩展可回调的Future

先做一次编码实现,再简单测试其功能。

编码实现

先定义一个Future接口的子接口ListenableFuture,用于添加可监听的回调:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface ListenableFuture<V> extends Future<V> {

    void addCallback(ListenableFutureCallback<V> callback, Executor executor);
}

ListenableFutureCallback是一个函数式回调接口:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@FunctionalInterface
public interface ListenableFutureCallback<V> {

    void callback(V value, Throwable throwable);
}

对于ListenableFutureCallback而言,回调的结果valuethrowable是互斥的。正常执行完毕的情况下value将会是执行结果值,throwablenull;异常执行完毕的情况下,value将会是nullthrowable将会是抛出的异常实例。如果更习惯于分开处理正常执行完毕的结果和异常执行完毕的结果,ListenableFutureCallback可以这样定义:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface ListenableFutureCallback<V> {

    void onSuccess(V value);

    void onError(Throwable throwable);
}

接着定义ListenableExecutorService接口继承ExecutorService接口:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public interface ListenableExecutorService extends ExecutorService {

    <T> ListenableFuture<T> listenableSubmit(Callable<T> callable);

    /**
     * 定义这个方法是因为有些时候由于任务执行时间非常短,有可能通过返回的ListenableFuture实例添加回调之前已经执行完毕,因此可以支持显式传入回调
     *
     * @param callable  callable
     * @param callbacks callbacks
     * @param executor  executor
     * @return ListenableFuture
     */
    <T> ListenableFuture<T> listenableSubmit(Callable<T> callable, List<ListenableFutureCallback<T>> callbacks, Executor executor);
}

然后添加一个执行单元适配器ListenableFutureCallbackRunnable,承载每次回调触发的调用(实现Runnable接口,从而支持异步执行):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@RequiredArgsConstructor
public class ListenableFutureCallbackRunnable<V> implements Runnable {

    private final ListenableFutureCallback<V> callback;
    private final V value;
    private final Throwable throwable;

    @Override
    public void run() {
        callback.callback(value, throwable);
    }
}

接着需要定义一个FutureTask的子类ListenableFutureTask,核心逻辑是覆盖FutureTask#done()方法触发回调:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
// ListenableFutureTask
public class ListenableFutureTask<V> extends FutureTask<V> implements ListenableFuture<V> {

    private final List<Execution<V>> executions = new ArrayList<>();

    public ListenableFutureTask(Callable<V> callable) {
        super(callable);
    }

    public ListenableFutureTask(Runnable runnable, V result) {
        super(runnable, result);
    }

    public static <V> ListenableFutureTask<V> newTaskFor(Callable<V> callable) {
        return new ListenableFutureTask<>(callable);
    }

    @Override
    protected void done() {
        Iterator<Execution<V>> iterator = executions.iterator();
        Throwable throwable = null;
        V value = null;
        try {
            value = get();
        } catch (Throwable t) {
            throwable = t;
        }
        while (iterator.hasNext()) {
            Execution<V> execution = iterator.next();
            ListenableFutureCallbackRunnable<V> callbackRunnable = new ListenableFutureCallbackRunnable<>(execution.getCallback(),
                    value, throwable);
            // 异步回调
            if (null != execution.getExecutor()) {
                execution.getExecutor().execute(callbackRunnable);
            } else {
                // 同步回调
                callbackRunnable.run();
            }
        }
    }

    @Override
    public void addCallback(ListenableFutureCallback<V> callback, Executor executor) {
        Execution<V> execution = new Execution<>();
        execution.setCallback(callback);
        execution.setExecutor(executor);
        executions.add(execution);
    }
}

// Execution - 承载每个回调实例和对应的Executor,Executor实例为null则进行同步回调
@Data
public class Execution <V>{

    private Executor executor;
    private ListenableFutureCallback<V> callback;
}

最后一步就是编写线程池ListenableThreadPoolExecutor,继承自ThreadPoolExecutor并且实现ListenableExecutorService接口:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class ListenableThreadPoolExecutor extends ThreadPoolExecutor implements ListenableExecutorService {

    public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
    }

    public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, 
    BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
    }

    public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, 
    BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, handler);
    }

    public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
     BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
    }

    @Override
    public <T> ListenableFuture<T> listenableSubmit(Callable<T> callable) {
        if (null == callable) {
            throw new IllegalArgumentException("callable");
        }
        ListenableFutureTask<T> listenableFutureTask = ListenableFutureTask.newTaskFor(callable);
        execute(listenableFutureTask);
        return listenableFutureTask;
    }

    @Override
    public <T> ListenableFuture<T> listenableSubmit(Callable<T> callable, List<ListenableFutureCallback<T>> callbacks, Executor executor) {
        if (null == callable) {
            throw new IllegalArgumentException("callable");
        }
        if (null == callbacks) {
            throw new IllegalArgumentException("callbacks");
        }
        ListenableFutureTask<T> listenableFutureTask = ListenableFutureTask.newTaskFor(callable);
        for (ListenableFutureCallback<T> callback : callbacks) {
            listenableFutureTask.addCallback(callback, executor);
        }
        execute(listenableFutureTask);
        return listenableFutureTask;
    }
}

测试

引入junit,编写测试类如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class ListenableFutureTest {

    private static ListenableExecutorService EXECUTOR;
    private static Executor E;

    @BeforeClass
    public static void before() {
        EXECUTOR = new ListenableThreadPoolExecutor(1, 3, 0, TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(10), new ThreadFactory() {

            private final AtomicInteger counter = new AtomicInteger();

            @Override
            public Thread newThread(Runnable r) {
                Thread thread = new Thread(r);
                thread.setDaemon(true);
                thread.setName(String.format("ListenableWorker-%d", counter.getAndIncrement()));
                return thread;
            }
        });
        E = Executors.newFixedThreadPool(3);
    }

    @Test
    public void testListenableFuture1() throws Exception {
        ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> {
            Thread.sleep(1000);
            return "message";
        });
        future.addCallback((v, t) -> {
            System.out.println(String.format("Value = %s,Throwable = %s", v, t));
        }, null);
        Thread.sleep(2000);
    }

    @Test
    public void testListenableFuture2() throws Exception {
        ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> {
            Thread.sleep(1000);
            throw new RuntimeException("exception");
        });
        future.addCallback((v, t) -> {
            System.out.println(String.format("Value = %s,Throwable = %s", v, t));
        }, null);
        Thread.sleep(2000);
    }

    @Test
    public void testListenableFuture3() throws Exception {
        ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> {
            Thread.sleep(1000);
            return "message";
        });
        future.addCallback((v, t) -> {
            System.out.println(String.format("Value = %s,Throwable = %s", v, t));
        }, E);
        System.out.println("testListenableFuture3 end...");
        Thread.sleep(2000);
    }

    @Test
    public void testListenableFuture4() throws Exception {
        ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> {
            Thread.sleep(1000);
            throw new RuntimeException("exception");
        });
        future.addCallback((v, t) -> {
            System.out.println(String.format("Value = %s,Throwable = %s", v, t));
        }, E);
        System.out.println("testListenableFuture4 end...");
        Thread.sleep(2000);
    }
}

执行结果:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
// testListenableFuture1
Value = message,Throwable = null

// testListenableFuture2
Value = null,Throwable = java.util.concurrent.ExecutionException: java.lang.RuntimeException: exception

// testListenableFuture3
testListenableFuture3 end...
Value = message,Throwable = null

// testListenableFuture4
testListenableFuture4 end...
Value = null,Throwable = java.util.concurrent.ExecutionException: java.lang.RuntimeException: exception

和预期的结果一致,注意一下如果Callable执行抛出异常,异常被包装为ExecutionException,要调用Throwable#getCause()才能得到原始的异常实例。

小结

本文通过了解ThreadPoolExecutorFuture的实现原理做简单的扩展,使得异步提交任务变得更加优雅和简便。强化了动手能力的同时,也能加深对并发编程的一些认知。当然,本文只是提供一个十分简陋的实现,笔者其实还想到了如对回调处理的耗时做监控、回调打上分组标签执行等等更完善的功能,等到有需要的场景再进行实现。

这里记录一下过程中的一些领悟:

  • Executor#execute()是线程池的核心接口,所有其他功能都是基于此接口做扩展,它的设计本身是无状态的。
  • 灵活使用适配器模式,可以在不改变已发布的接口的功能同时实现新的接口的功能适配。
  • 要善于发掘和使用JDK类库设计者留给开发者的扩展接口。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年7月2日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
JAVA线程池学习,ThreadPoolTaskExecutor和ThreadPoolExecutor有何区别?
ThreadPoolTaskExecutor是spring core包中的,而ThreadPoolExecutor是JDK中的JUC。ThreadPoolTaskExecutor是对ThreadPoolExecutor进行了封装处理。
爱撸猫的杰
2019/03/28
14.8K0
JAVA线程池学习,ThreadPoolTaskExecutor和ThreadPoolExecutor有何区别?
Executor执行器与线程池
Java使用Executor框架执行多线程任务,创建与操作系统线程一对一的映射线程,由操作系统分配CPU来执行。称为任务的两级调度模型,如下图所示:
搬砖俱乐部
2019/06/15
9880
Java线程的基本使用
在Java中使用多线程,本质上还是对Thread对象的操作。线程池只是为了方便对线程的管理,避免频繁的创建和销毁线程带来不必要的系统开销,内部通过指定的线程数和阻塞队列实现。
spilledyear
2019/12/24
6240
线程、线程池以及CompletableFuture组合式异步编程
所有Executors框架提供的线程池底层均为java.util.concurrent.ThreadPoolExecutor
shimeath
2021/01/05
7270
Java 多线程(7)----线程池(下)
在上篇文章:Java 多线程—线程池(上) 中我们看了一下 Java 中的阻塞队列,我们知道阻塞队列是一种可以对线程进行阻塞控制的队列,并且在前面我们也使用了阻塞队列来实现 生产者-消费者模型 。在文章最后,我们还看了一下 Future 接口和其中对应的方法,如果你对这些不熟悉,建议先去看一下上一篇文章。有了前面的知识作为基础之后,我们来正式看一下 Java 中的线程池。
指点
2019/01/18
5720
Java 多线程(7)----线程池(下)
从使用到原理学习Java线程池
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。
Java团长
2018/07/23
3780
从使用到原理学习Java线程池
JUC并发—14.Future模式和异步编程分析一
Future/Callable实现了一个异步执行并带有返回结果的功能。Future表示获取一个异步执行的结果,Callable表示一个异步执行的任务,Callable会产生一个结果并给到Future。
东阳马生架构
2025/05/07
1620
JUC内置线程池
整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。 适合任务数比较密集,但每个任务执行时间较短的情况。
兜兜转转
2023/03/08
1930
JUC内置线程池
【原创】Java并发编程系列33 | 深入理解线程池(上)
并发编程必不可少的线程池,接下来分两篇文章介绍线程池,本文是第一篇。线程池将介绍如下内容:
java进阶架构师
2020/08/28
4540
【原创】Java并发编程系列33 | 深入理解线程池(上)
并发编程之线程池的使用
并发编程之线程池的使用 转载自http://www.cnblogs.com/dolphin0520/p/3932921.html https://blog.csdn.net/wanghao_0206/article/details/76460877 Java中的ThreadPoolExecutor类 java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExe
爱撒谎的男孩
2018/07/04
3740
JAVA线程池的几种使用方式以及线程同步详解
volatile还有一个重要的作用是禁止指令重排序优化,举个例子 下面代码中如果initFlag不用volatile修饰的话,就不能保证程序在运行的时候numOne,numTwo,numThree,str的赋值一定在initFlag之前,多线程并发访问的时候就会有可能出现initFlag为true,但是前面的赋值并没有完成
yingzi_code
2019/08/31
1.8K0
线程池技术之:ThreadPoolExecutor 源码解析
java中的所说的线程池,一般都是围绕着 ThreadPoolExecutor 来展开的。其他的实现基本都是基于它,或者模仿它的。所以只要理解 ThreadPoolExecutor, 就相当于完全理解了线程池的精髓。
烂猪皮
2021/03/16
3720
线程池技术之:ThreadPoolExecutor 源码解析
Java并发指南12:深度解读 java 线程池设计思想及源码实现
本文是微信公众号【Java技术江湖】的《Java并发指南》其中一篇,本文大部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。
Java技术江湖
2019/11/20
6590
Java并发指南12:深度解读 java 线程池设计思想及源码实现
Java的Executor框架和线程池实现原理
Executor接口是Executor框架中最基础的部分,定义了一个用于执行Runnable的execute方法,它没有实现类只有另一个重要的子接口ExecutorService
全栈程序员站长
2022/11/17
5010
Java的Executor框架和线程池实现原理
JUC学习笔记(四)—线程池
线程池 【死磕Java并发】—–J.U.C之线程池:ThreadPoolExecutor
Monica2333
2020/06/19
5400
Java Review - 线程池使用FutureTask的小坑
线程池使用FutureTask时如果把拒绝策略设置为 DiscardPolicy和 DiscardOldestPolicy,并且在被拒绝的任务的Future对象上调用了无参get方法,那么调用线程会一直被阻塞。
小小工匠
2021/11/22
5170
Java Review - 线程池使用FutureTask的小坑
线程&线程池&死锁问题
思考:Thread类的构造只能接受Runnable接口,并不能接口Callable接口,怎么办? 解决:找中间人。如果有一个中间人同时实现了Runnable和Callable,那不就行了嘛。这就是适配器模式。这个中间人就是FutureTask实现类。
贪挽懒月
2019/05/21
1.3K0
线程&线程池&死锁问题
java并发编程(4)--线程池的使用
转载:http://www.cnblogs.com/dolphin0520/p/3932921.html 一. java中的ThreadPoolExecutor类 java.util.concurrent.ThreadPoolExecutor类时线程池中最核心的一个类,因此如果要透彻的了解java中线程池,必须先了解这个类。下面看ThreadPoolExecutor类的具体实现源码: 在ThreadPoolExecutor类中提供了四个构造方法: public class ThreadPoolExecuto
Ryan-Miao
2018/03/13
8080
透彻Java线程池的实现原理
其实java线程池的实现原理很简单,说白了就是一个线程集合workerSet和一个阻塞队列workQueue。当用户向线程池提交一个任务(也就是线程)时,线程池会先将任务放入workQueue中。
挨踢小子部落阁
2023/03/15
3440
透彻Java线程池的实现原理
ThreadPoolExecutor 线程池的源码解析
  上一篇从整体上介绍了Executor接口,从上一篇我们知道了Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法
小勇DW3
2018/08/30
4530
相关推荐
JAVA线程池学习,ThreadPoolTaskExecutor和ThreadPoolExecutor有何区别?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验