01. BILSTM+ATTENTION
网络结构
1层BILSTM在训练集准确率:99.8%,测试集准确率:96.5%;
2层BILSTM在训练集准确率:99.9%,测试集准确率:97.3%;
调参
dropout的值要在 0.1 以下(经验之谈,笔者在实践中发现,dropout取0.1时比dropout取0.3时在测试集准确率能提高0.5%)。
02. Transformer
文本分类不是生成式的任务,因此只使用Transformer的编码部分(Encoder)进行特征提取。如果不熟悉Transformer模型的原理请移步:https://blog.csdn.net/dendi_hust/article/details/98759771
class TextSlfAttnNet(nn.Module):
''' 自注意力模型 '''
def __init__(self,
config: TextSlfAttnConfig,
char_size=5000,
pinyin_size=5000):
super(TextSlfAttnNet, self).__init__()
# 字向量
self.char_embedding = nn.Embedding(char_size, config.embedding_size)
# 拼音向量
self.pinyin_embedding = nn.Embedding(pinyin_size, config.embedding_size)
# 位置向量
self.pos_embedding = nn.Embedding.from_pretrained(
get_sinusoid_encoding_table(config.max_sen_len, config.embedding_size, padding_idx=0),
freeze=True)
self.layer_stack = nn.ModuleList([
EncoderLayer(config.embedding_size, config.hidden_dims, config.n_heads, config.k_dims, config.v_dims, dropout=config.keep_dropout)
for _ in range(config.hidden_layers)
])
self.fc_out = nn.Sequential(
nn.Dropout(config.keep_dropout),
nn.Linear(config.embedding_size, config.hidden_dims),
nn.ReLU(inplace=True),
nn.Dropout(config.keep_dropout),
nn.Linear(config.hidden_dims, config.num_classes),
)
def forward(self, char_id, pinyin_id, pos_id):
char_inputs = self.char_embedding(char_id)
pinyin_iputs = self.pinyin_embedding(pinyin_id)
sen_inputs = torch.cat((char_inputs, pinyin_iputs), dim=1)
# sentence_length = sen_inputs.size()[1]
# pos_id = torch.LongTensor(np.array([i for i in range(sentence_length)]))
pos_inputs = self.pos_embedding(pos_id)
# batch_size * sen_len * embedding_size
inputs = sen_inputs + pos_inputs
for layer in self.layer_stack:
inputs, _ = layer(inputs)
enc_outs = inputs.permute(0, 2, 1)
enc_outs = torch.sum(enc_outs, dim=-1)
return self.fc_out(enc_outs)
class EncoderLayer(nn.Module):
'''编码层'''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
'''
:param d_model: 模型输入维度
:param d_inner: 前馈神经网络隐层维度
:param n_head: 多头注意力
:param d_k: 键向量
:param d_v: 值向量
:param dropout:
'''
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None):
'''
:param enc_input:
:param non_pad_mask:
:param slf_attn_mask:
:return:
'''
enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask)
if non_pad_mask is not None:
enc_output *= non_pad_mask
enc_output = self.pos_ffn(enc_output)
if non_pad_mask is not None:
enc_output *= non_pad_mask
return enc_output, enc_slf_attn
class MultiHeadAttention(nn.Module):
'''
“多头”注意力模型
'''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
'''
:param n_head: “头”数
:param d_model: 输入维度
:param d_k: 键向量维度
:param d_v: 值向量维度
:param dropout:
'''
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
# 产生 查询向量q,键向量k, 值向量v
self.w_qs = nn.Linear(d_model, n_head * d_k)
self.w_ks = nn.Linear(d_model, n_head * d_k)
self.w_vs = nn.Linear(d_model, n_head * d_v)
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
self.layer_normal = nn.LayerNorm(d_model)
self.fc = nn.Linear(n_head * d_v, d_model)
nn.init.xavier_normal_(self.fc.weight)
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
'''
计算多头注意力
:param q: 用于产生 查询向量
:param k: 用于产生 键向量
:param v: 用于产生 值向量
:param mask:
:return:
'''
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
residual = q
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# (n*b) x lq x dk
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k)
# (n*b) x lk x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k)
# (n*b) x lv x dv
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v)
# mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
#
output, attn = self.attention(q, k, v, mask=None)
# (n_heads * batch_size) * lq * dv
output = output.view(n_head, sz_b, len_q, d_v)
# batch_size * len_q * (n_heads * dv)
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
output = self.dropout(self.fc(output))
output = self.layer_normal(output + residual)
return output, attn
class PositionwiseFeedForward(nn.Module):
'''
前馈神经网络
'''
def __init__(self, d_in, d_hid, dropout=0.1):
'''
:param d_in: 输入维度
:param d_hid: 隐藏层维度
:param dropout:
'''
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Conv1d(d_in, d_hid, 1)
self.w_2 = nn.Conv1d(d_hid, d_in, 1)
self.layer_normal = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
output = x.transpose(1, 2)
output = self.w_2(F.relu(self.w_1(output)))
output = output.transpose(1, 2)
output = self.dropout(output)
output = self.layer_normal(output + residual)
return output
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
'''
计算位置向量
:param n_position: 位置的最大值
:param d_hid: 位置向量的维度,和字向量维度相同(要相加求和)
:param padding_idx:
:return:
'''
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.
return torch.FloatTensor(sinusoid_table)
在分类任务中,与`BILSTM+ATTENTION`相比:
1. 模型比`LSTM`大很多,同样的任务`LSTM`模型6M左右,`Transformer`模型55M;
2. 收敛速度比较慢;
3. 超参比较多,不易调参,但同时也意味着弹性比较大;
4. 效果和`BILSTM`模型差不多。
03. TextCNN
class TextCNN(nn.Module):
def __init__(self,
config:TCNNConfig,
char_size = 5000, pinyin_size=5000):
super(TextCNN, self).__init__()
self.learning_rate = config.learning_rate
self.keep_dropout = config.keep_dropout
self.sequence_length = config.sequence_length
self.char_embedding_size = config.char_embedding_size
self.pinyin_embedding_size = config.pinyin_embedding_size
self.filter_list = config.filter_list
self.out_channels = config.out_channels
self.l2_reg_lambda = config.l2_reg_lambda
self.model_dir = config.model_dir
self.data_save_frequency = config.data_save_frequency
self.model_save_frequency = config.model_save_frequency
self.char_size = char_size
self.pinyin_size = pinyin_size
self.embedding_size = self.char_embedding_size
self.total_filters_size = self.out_channels * len(self.filter_list)
self.build_model()
def build_model(self):
# 初始化字向量
self.char_embeddings = nn.Embedding(self.char_size, self.char_embedding_size)
# 字向量参与更新
self.char_embeddings.weight.requires_grad = True
# 初始化拼音向量
self.pinyin_embeddings = nn.Embedding(self.pinyin_size, self.pinyin_embedding_size)
self.pinyin_embeddings.weight.requires_grad = True
self.conv_list = nn.ModuleList()
conv_list = [nn.Sequential(
nn.Conv1d(self.embedding_size, self.out_channels, filter_size),
nn.BatchNorm1d(self.out_channels),
nn.ReLU(inplace=True)
) for filter_size in self.filter_list]
# 卷积列表
self.conv_lists_layer = nn.ModuleList(conv_list)
self.output_layer = nn.Sequential(
nn.Dropout(self.keep_dropout),
nn.Linear(self.total_filters_size, self.total_filters_size),
nn.ReLU(inplace=True),
nn.Linear(self.total_filters_size, 2)
)
def forward(self, char_id, pinyin_id):
# char_id = torch.from_numpy(np.array(input[0])).long()
# pinyin_id = torch.from_numpy(np.array(input[1])).long()
pooled_outputs = []
sen_char = self.char_embeddings(char_id)
sen_pinyin = self.pinyin_embeddings(pinyin_id)
sen_embed = torch.cat((sen_char, sen_pinyin), dim=1)
# 转换成 (N C SEN_LEN) 的形式
sen_embed = sen_embed.permute(0, 2, 1)
for conv in self.conv_lists_layer:
# print(sen_embed.shape)
conv_output = conv(sen_embed)
max_polling_output = torch.max(conv_output, dim=2)
pooled_outputs.append(max_polling_output[0])
total_pool = torch.cat(pooled_outputs, 1)
flatten_pool = total_pool.view(-1, self.total_filters_size)
fc_output = self.output_layer(flatten_pool)
return fc_output