从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。 数据下载请点击:下载,密码:mfqy。
测试数据主要包括3000条记录,13个字段,跟训练数据的不同是测试数据并不包括房屋销售价格,学员需要通过由训练数据所建立的模型以及所给的测试数据,得出测试数据相应的房屋销售价格预测值。
这里我们选择多元线性回归模型。公式如下:选择多元线性回归模型。
y表示我们要求的销售价格,x表示特征值。需要调用sklearn库来进行训练。
下载的是两个数据文件,一个是真实数据,一个是测试数据,打开kc_train.csv,能够看到第二列是销售价格,而我们要预测的就是销售价格,所以在训练过程中是不需要销售价格的,把第二列删除掉,新建一个csv文件存放销售价格这一列,作为后面的结果对比。
首先先读取数据,查看数据是否存在缺失值,然后进行特征缩放统一数据维度。代码如下:(注:最后会给出完整代码)
#读取数据
housing = pd.read_csv('kc_train.csv')
target=pd.read_csv('kc_train2.csv') #销售价格
t=pd.read_csv('kc_test.csv') #测试数据
#数据预处理
housing.info() #查看是否有缺失值
#特征缩放
from sklearn.preprocessing import MinMaxScaler
minmax_scaler=MinMaxScaler()
minmax_scaler.fit(housing) #进行内部拟合,内部参数会发生变化
scaler_housing=minmax_scaler.transform(housing)
scaler_housing=pd.DataFrame(scaler_housing,columns=housing.columns)
使用sklearn库的线性回归函数进行调用训练。梯度下降法获得误差最小值。最后使用均方误差法来评价模型的好坏程度,并画图进行比较。
#选择基于梯度下降的线性回归模型
from sklearn.linear_model import LinearRegression
LR_reg=LinearRegression()
#进行拟合
LR_reg.fit(scaler_housing,target)
#使用均方误差用于评价模型好坏
from sklearn.metrics import mean_squared_error
preds=LR_reg.predict(scaler_housing) #输入数据进行预测得到结果
mse=mean_squared_error(preds,target) #使用均方误差来评价模型好坏,可以输出mse进行查看评价值
#绘图进行比较
plot.figure(figsize=(10,7)) #画布大小
num=100
x=np.arange(1,num+1) #取100个点进行比较
plot.plot(x,target[:num],label='target') #目标取值
plot.plot(x,preds[:num],label='preds') #预测取值
plot.legend(loc='upper right') #线条显示位置
plot.show()
最后输出的图是这样的:
从这张结果对比图中就可以看出模型是否得到精确的目标函数,是否能够精确预测房价。
# 兼容 pythone2,3
from __future__ import print_function
# 导入相关python库
import os
import numpy as np
import pandas as pd
#设定随机数种子
np.random.seed(36)
#使用matplotlib库画图
import matplotlib
import seaborn
import matplotlib.pyplot as plot
from sklearn import datasets
#读取数据
housing = pd.read_csv('kc_train.csv')
target=pd.read_csv('kc_train2.csv') #销售价格
t=pd.read_csv('kc_test.csv') #测试数据
#数据预处理
housing.info() #查看是否有缺失值
#特征缩放
from sklearn.preprocessing import MinMaxScaler
minmax_scaler=MinMaxScaler()
minmax_scaler.fit(housing) #进行内部拟合,内部参数会发生变化
scaler_housing=minmax_scaler.transform(housing)
scaler_housing=pd.DataFrame(scaler_housing,columns=housing.columns)
mm=MinMaxScaler()
mm.fit(t)
scaler_t=mm.transform(t)
scaler_t=pd.DataFrame(scaler_t,columns=t.columns)
#选择基于梯度下降的线性回归模型
from sklearn.linear_model import LinearRegression
LR_reg=LinearRegression()
#进行拟合
LR_reg.fit(scaler_housing,target)
#使用均方误差用于评价模型好坏
from sklearn.metrics import mean_squared_error
preds=LR_reg.predict(scaler_housing) #输入数据进行预测得到结果
mse=mean_squared_error(preds,target) #使用均方误差来评价模型好坏,可以输出mse进行查看评价值
#绘图进行比较
plot.figure(figsize=(10,7)) #画布大小
num=100
x=np.arange(1,num+1) #取100个点进行比较
plot.plot(x,target[:num],label='target') #目标取值
plot.plot(x,preds[:num],label='preds') #预测取值
plot.legend(loc='upper right') #线条显示位置
plot.show()
#输出测试数据
result=LR_reg.predict(scaler_t)
df_result=pd.DataFrame(result)
df_result.to_csv("result.csv")