在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分问题的二分类算法。通过构造分离超平面将正类和负类区分开。构造了如下的输入空间到输出空间的函数:
其中,
为权重,
为偏置。
为符号函数:
求解这个函数的重点就是求解函数中的参数:
和
。Rosenblatt感知机通过构造损失函数
,并求得使得这样的损失函数达到最小时的
和
。
其中,
为:
这里的
为所有误分类的点的集合。我们的目标是求得损失函数的最小值:
。
通过梯度下降法(详细请见“简单易学的机器学习算法——Rosenblatt感知机”),我们得到了
和
的更新公式:
其中,
为学习率。
对偶形式的基本想法是,将
和
表示为实例
和标记
的线性组合的形式,通过求解其系数而求得
和
。
通过上面的
和
的更新公式,我们发现,
和
是一个累加的过程。如果令
,
,则
和
可以表示为:
其中,
。
此时的感知机模型就变为:
,
,更新
和
利用博文“简单易学的机器学习算法——Rosenblatt感知机”中的数据集,原始数据集如下图所示:
(原始数据点)
MATLAB代码
%% Rosenblatt感知机的对偶解法
clear all;
clc;
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
[m,n] = size(x);%取得数据集的大小
%% 画出原始的点
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for i = 1:m
plot(x(i,1),x(i,2),'.');
end
%% 初始化
alpha = zeros(1,m);
b = 0;
yita = 1;%学习率
gram = zeros(m,m);
%% 计算Gram矩阵
for i = 1:m
for j = 1:m
gram(i,j)=x(i,:)*x(j,:)';
end
end
%% 更新
for i = 1:m
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
end
end
% 要使得数据集中没有误分类的点
flag = 0;%标志位,用于标记有没有误分类的点
i = 1;
while flag~=1
while i <= 3
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%% 重新计算w和b
for i = 1:m
x_new(i,:) = x(i,:) * y(i);
end
w = alpha * x_new;
%% 画出分隔线
x_1 = (0:3);
y_1 = (-b-w(1,1)*x_1)./w(1,2);
plot(x_1,y_1);
最终的分离超平面:
(最终分离超平面)