前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聊聊flink DataStream的join操作

聊聊flink DataStream的join操作

原创
作者头像
code4it
发布2019-01-10 14:14:11
2.7K0
发布2019-01-10 14:14:11
举报
文章被收录于专栏:码匠的流水账

本文主要研究一下flink DataStream的join操作

实例

代码语言:javascript
复制
stream.join(otherStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(<WindowAssigner>)
    .apply(<JoinFunction>)
  • 这里首先调用join,与另外一个stream合并,返回的是JoinedStreams,之后就可以调用JoinedStreams的where操作来构建Where对象构造条件;Where有equalTo操作可以构造EqualTo,而EqualTo有window操作可以构造WithWindow,而WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作

DataStream.join

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

代码语言:javascript
复制
@Public
public class DataStream<T> {
    //......
​
    /**
     * Creates a join operation. See {@link JoinedStreams} for an example of how the keys
     * and window can be specified.
     */
    public <T2> JoinedStreams<T, T2> join(DataStream<T2> otherStream) {
        return new JoinedStreams<>(this, otherStream);
    }
​
    //......
}
  • DataStream提供了join方法,用于执行join操作,它返回的是JoinedStreams

JoinedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
@Public
public class JoinedStreams<T1, T2> {
​
    /** The first input stream. */
    private final DataStream<T1> input1;
​
    /** The second input stream. */
    private final DataStream<T2> input2;
​
    public JoinedStreams(DataStream<T1> input1, DataStream<T2> input2) {
        this.input1 = requireNonNull(input1);
        this.input2 = requireNonNull(input2);
    }
​
    public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector)  {
        requireNonNull(keySelector);
        final TypeInformation<KEY> keyType = TypeExtractor.getKeySelectorTypes(keySelector, input1.getType());
        return where(keySelector, keyType);
    }
​
    public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector, TypeInformation<KEY> keyType)  {
        requireNonNull(keySelector);
        requireNonNull(keyType);
        return new Where<>(input1.clean(keySelector), keyType);
    }
​
    //......
}
  • JoinedStreams主要是提供where操作来构建Where对象

Where

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
    @Public
    public class Where<KEY> {
​
        private final KeySelector<T1, KEY> keySelector1;
        private final TypeInformation<KEY> keyType;
​
        Where(KeySelector<T1, KEY> keySelector1, TypeInformation<KEY> keyType) {
            this.keySelector1 = keySelector1;
            this.keyType = keyType;
        }
​
        public EqualTo equalTo(KeySelector<T2, KEY> keySelector)  {
            requireNonNull(keySelector);
            final TypeInformation<KEY> otherKey = TypeExtractor.getKeySelectorTypes(keySelector, input2.getType());
            return equalTo(keySelector, otherKey);
        }
​
        public EqualTo equalTo(KeySelector<T2, KEY> keySelector, TypeInformation<KEY> keyType)  {
            requireNonNull(keySelector);
            requireNonNull(keyType);
​
            if (!keyType.equals(this.keyType)) {
                throw new IllegalArgumentException("The keys for the two inputs are not equal: " +
                        "first key = " + this.keyType + " , second key = " + keyType);
            }
​
            return new EqualTo(input2.clean(keySelector));
        }
​
        //......
​
    }
  • Where对象主要提供equalTo操作用于构建EqualTo对象

EqualTo

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
        @Public
        public class EqualTo {
​
            private final KeySelector<T2, KEY> keySelector2;
​
            EqualTo(KeySelector<T2, KEY> keySelector2) {
                this.keySelector2 = requireNonNull(keySelector2);
            }
​
            /**
             * Specifies the window on which the join operation works.
             */
            @PublicEvolving
            public <W extends Window> WithWindow<T1, T2, KEY, W> window(WindowAssigner<? super TaggedUnion<T1, T2>, W> assigner) {
                return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, assigner, null, null, null);
            }
        }
  • EqualTo对象提供window操作用于构建WithWindow对象

WithWindow

/flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
    @Public
    public static class WithWindow<T1, T2, KEY, W extends Window> {
​
        private final DataStream<T1> input1;
        private final DataStream<T2> input2;
​
        private final KeySelector<T1, KEY> keySelector1;
        private final KeySelector<T2, KEY> keySelector2;
        private final TypeInformation<KEY> keyType;
​
        private final WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner;
​
        private final Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger;
​
        private final Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor;
​
        private final Time allowedLateness;
​
        private CoGroupedStreams.WithWindow<T1, T2, KEY, W> coGroupedWindowedStream;
​
        @PublicEvolving
        protected WithWindow(DataStream<T1> input1,
                DataStream<T2> input2,
                KeySelector<T1, KEY> keySelector1,
                KeySelector<T2, KEY> keySelector2,
                TypeInformation<KEY> keyType,
                WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner,
                Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger,
                Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor,
                Time allowedLateness) {
​
            this.input1 = requireNonNull(input1);
            this.input2 = requireNonNull(input2);
​
            this.keySelector1 = requireNonNull(keySelector1);
            this.keySelector2 = requireNonNull(keySelector2);
            this.keyType = requireNonNull(keyType);
​
            this.windowAssigner = requireNonNull(windowAssigner);
​
            this.trigger = trigger;
            this.evictor = evictor;
​
            this.allowedLateness = allowedLateness;
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> trigger(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, newTrigger, evictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> evictor(Evictor<? super TaggedUnion<T1, T2>, ? super W> newEvictor) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, trigger, newEvictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                windowAssigner, trigger, evictor, newLateness);
        }
​
        public <T> DataStream<T> apply(JoinFunction<T1, T2, T> function) {
            TypeInformation<T> resultType = TypeExtractor.getBinaryOperatorReturnType(
                function,
                JoinFunction.class,
                0,
                1,
                2,
                TypeExtractor.NO_INDEX,
                input1.getType(),
                input2.getType(),
                "Join",
                false);
​
            return apply(function, resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(JoinFunction<T1, T2, T> function) {
            return (SingleOutputStreamOperator<T>) apply(function);
        }
​
        public <T> DataStream<T> apply(FlatJoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            //clean the closure
            function = input1.getExecutionEnvironment().clean(function);
​
            coGroupedWindowedStream = input1.coGroup(input2)
                .where(keySelector1)
                .equalTo(keySelector2)
                .window(windowAssigner)
                .trigger(trigger)
                .evictor(evictor)
                .allowedLateness(allowedLateness);
​
            return coGroupedWindowedStream
                    .apply(new FlatJoinCoGroupFunction<>(function), resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(FlatJoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            return (SingleOutputStreamOperator<T>) apply(function, resultType);
        }
​
        public <T> DataStream<T> apply(FlatJoinFunction<T1, T2, T> function) {
            TypeInformation<T> resultType = TypeExtractor.getBinaryOperatorReturnType(
                function,
                FlatJoinFunction.class,
                0,
                1,
                2,
                new int[]{2, 0},
                input1.getType(),
                input2.getType(),
                "Join",
                false);
​
            return apply(function, resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(FlatJoinFunction<T1, T2, T> function) {
            return (SingleOutputStreamOperator<T>) apply(function);
        }
​
        public <T> DataStream<T> apply(JoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            //clean the closure
            function = input1.getExecutionEnvironment().clean(function);
​
            coGroupedWindowedStream = input1.coGroup(input2)
                .where(keySelector1)
                .equalTo(keySelector2)
                .window(windowAssigner)
                .trigger(trigger)
                .evictor(evictor)
                .allowedLateness(allowedLateness);
​
            return coGroupedWindowedStream
                    .apply(new JoinCoGroupFunction<>(function), resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(JoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            return (SingleOutputStreamOperator<T>) apply(function, resultType);
        }
​
        @VisibleForTesting
        Time getAllowedLateness() {
            return allowedLateness;
        }
​
        @VisibleForTesting
        CoGroupedStreams.WithWindow<T1, T2, KEY, W> getCoGroupedWindowedStream() {
            return coGroupedWindowedStream;
        }
    }
  • WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作(with操作被标记为废弃)
  • apply操作可以接收JoinFunction或者FlatJoinFunction,它内部是使用DataStream的coGroup方法创建CoGroupedStreams,之后将自身的where及equalTo的keySelector、windowAssigner、trigger、evictor、allowedLateness都设置给CoGroupedStreams,最后调用CoGroupedStreams的WithWindow对象的apply方法
  • CoGroupedStreams的WithWindow对象的apply方法与JoinedStreams的WithWindow对象的apply方法参数不同,CoGroupedStreams的WithWindow的apply方法接收的是CoGroupFunction,因而JoinedStreams的WithWindow对象的apply方法内部将JoinFunction或者FlatJoinFunction包装为CoGroupFunction(JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装)传递给CoGroupedStreams的WithWindow的apply方法

JoinFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/JoinFunction.java

代码语言:javascript
复制
@Public
@FunctionalInterface
public interface JoinFunction<IN1, IN2, OUT> extends Function, Serializable {
​
    /**
     * The join method, called once per joined pair of elements.
     *
     * @param first The element from first input.
     * @param second The element from second input.
     * @return The resulting element.
     *
     * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
     *                   to fail and may trigger recovery.
     */
    OUT join(IN1 first, IN2 second) throws Exception;
}
  • JoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction

FlatJoinFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/FlatJoinFunction.java

代码语言:javascript
复制
@Public
@FunctionalInterface
public interface FlatJoinFunction<IN1, IN2, OUT> extends Function, Serializable {
​
    /**
     * The join method, called once per joined pair of elements.
     *
     * @param first The element from first input.
     * @param second The element from second input.
     * @param out The collector used to return zero, one, or more elements.
     *
     * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
     *                   to fail and may trigger recovery.
     */
    void join (IN1 first, IN2 second, Collector<OUT> out) throws Exception;
}
  • FlatJoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction;与JoinFunction的join方法不同,FlatJoinFunction的join方法多了Collector参数,可以用来发射0条、1条或者多条数据,所以是Flat命名

CoGroupedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
@Public
public class CoGroupedStreams<T1, T2> {
    //......
​
@Public
    public static class WithWindow<T1, T2, KEY, W extends Window> {
        private final DataStream<T1> input1;
        private final DataStream<T2> input2;
​
        private final KeySelector<T1, KEY> keySelector1;
        private final KeySelector<T2, KEY> keySelector2;
​
        private final TypeInformation<KEY> keyType;
​
        private final WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner;
​
        private final Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger;
​
        private final Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor;
​
        private final Time allowedLateness;
​
        private WindowedStream<TaggedUnion<T1, T2>, KEY, W> windowedStream;
​
        protected WithWindow(DataStream<T1> input1,
                DataStream<T2> input2,
                KeySelector<T1, KEY> keySelector1,
                KeySelector<T2, KEY> keySelector2,
                TypeInformation<KEY> keyType,
                WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner,
                Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger,
                Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor,
                Time allowedLateness) {
            this.input1 = input1;
            this.input2 = input2;
​
            this.keySelector1 = keySelector1;
            this.keySelector2 = keySelector2;
            this.keyType = keyType;
​
            this.windowAssigner = windowAssigner;
            this.trigger = trigger;
            this.evictor = evictor;
​
            this.allowedLateness = allowedLateness;
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> trigger(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, newTrigger, evictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> evictor(Evictor<? super TaggedUnion<T1, T2>, ? super W> newEvictor) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, trigger, newEvictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, trigger, evictor, newLateness);
        }
​
        public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function) {
​
            TypeInformation<T> resultType = TypeExtractor.getCoGroupReturnTypes(
                function,
                input1.getType(),
                input2.getType(),
                "CoGroup",
                false);
​
            return apply(function, resultType);
        }
​
        public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            //clean the closure
            function = input1.getExecutionEnvironment().clean(function);
​
            UnionTypeInfo<T1, T2> unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());
            UnionKeySelector<T1, T2, KEY> unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2);
​
            DataStream<TaggedUnion<T1, T2>> taggedInput1 = input1
                    .map(new Input1Tagger<T1, T2>())
                    .setParallelism(input1.getParallelism())
                    .returns(unionType);
            DataStream<TaggedUnion<T1, T2>> taggedInput2 = input2
                    .map(new Input2Tagger<T1, T2>())
                    .setParallelism(input2.getParallelism())
                    .returns(unionType);
​
            DataStream<TaggedUnion<T1, T2>> unionStream = taggedInput1.union(taggedInput2);
​
            // we explicitly create the keyed stream to manually pass the key type information in
            windowedStream =
                    new KeyedStream<TaggedUnion<T1, T2>, KEY>(unionStream, unionKeySelector, keyType)
                    .window(windowAssigner);
​
            if (trigger != null) {
                windowedStream.trigger(trigger);
            }
            if (evictor != null) {
                windowedStream.evictor(evictor);
            }
            if (allowedLateness != null) {
                windowedStream.allowedLateness(allowedLateness);
            }
​
            return windowedStream.apply(new CoGroupWindowFunction<T1, T2, T, KEY, W>(function), resultType);
        }
​
        //......
​
    }
​
    //......
}
  • CoGroupedStreams的整体类结构跟JoinedStreams很像,CoGroupedStreams提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作;其中一个不同的地方是CoGroupedStreams定义的WithWindow对象的apply操作接收的Function是CoGroupFunction类型,而JoinedStreams定义的WithWindow对象的apply操作接收的Function类型是JoinFunction或FlatJoinFunction

CoGroupFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/CoGroupFunction.java

代码语言:javascript
复制
@Public
@FunctionalInterface
public interface CoGroupFunction<IN1, IN2, O> extends Function, Serializable {
​
    /**
     * This method must be implemented to provide a user implementation of a
     * coGroup. It is called for each pair of element groups where the elements share the
     * same key.
     *
     * @param first The records from the first input.
     * @param second The records from the second.
     * @param out A collector to return elements.
     *
     * @throws Exception The function may throw Exceptions, which will cause the program to cancel,
     *                   and may trigger the recovery logic.
     */
    void coGroup(Iterable<IN1> first, Iterable<IN2> second, Collector<O> out) throws Exception;
}
  • CoGroupFunction继承了Function、Serializable,它定义了coGroup操作,可以用来实现outer join,其参数使用的是Iterable,而JoinFunction与FlatJoinFunction的join参数使用的是单个对象类型

WrappingFunction

flink-java-1.7.0-sources.jar!/org/apache/flink/api/java/operators/translation/WrappingFunction.java

代码语言:javascript
复制
@Internal
public abstract class WrappingFunction<T extends Function> extends AbstractRichFunction {
​
    private static final long serialVersionUID = 1L;
​
    protected T wrappedFunction;
​
    protected WrappingFunction(T wrappedFunction) {
        this.wrappedFunction = wrappedFunction;
    }
​
    @Override
    public void open(Configuration parameters) throws Exception {
        FunctionUtils.openFunction(this.wrappedFunction, parameters);
    }
​
    @Override
    public void close() throws Exception {
        FunctionUtils.closeFunction(this.wrappedFunction);
    }
​
    @Override
    public void setRuntimeContext(RuntimeContext t) {
        super.setRuntimeContext(t);
​
        FunctionUtils.setFunctionRuntimeContext(this.wrappedFunction, t);
    }
​
    public T getWrappedFunction () {
        return this.wrappedFunction;
    }
}
  • WrappingFunction继承了AbstractRichFunction,这里它覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction

JoinCoGroupFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
    /**
     * CoGroup function that does a nested-loop join to get the join result.
     */
    private static class JoinCoGroupFunction<T1, T2, T>
            extends WrappingFunction<JoinFunction<T1, T2, T>>
            implements CoGroupFunction<T1, T2, T> {
        private static final long serialVersionUID = 1L;
​
        public JoinCoGroupFunction(JoinFunction<T1, T2, T> wrappedFunction) {
            super(wrappedFunction);
        }
​
        @Override
        public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out) throws Exception {
            for (T1 val1: first) {
                for (T2 val2: second) {
                    out.collect(wrappedFunction.join(val1, val2));
                }
            }
        }
    }
  • JoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
  • JoinedStreams定义了私有静态类JoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将JoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
  • JoinFunction定义的join方法,接收的是两个对象类型参数,而JoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数

FlatJoinCoGroupFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

代码语言:javascript
复制
    /**
     * CoGroup function that does a nested-loop join to get the join result. (FlatJoin version)
     */
    private static class FlatJoinCoGroupFunction<T1, T2, T>
            extends WrappingFunction<FlatJoinFunction<T1, T2, T>>
            implements CoGroupFunction<T1, T2, T> {
        private static final long serialVersionUID = 1L;
​
        public FlatJoinCoGroupFunction(FlatJoinFunction<T1, T2, T> wrappedFunction) {
            super(wrappedFunction);
        }
​
        @Override
        public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out) throws Exception {
            for (T1 val1: first) {
                for (T2 val2: second) {
                    wrappedFunction.join(val1, val2, out);
                }
            }
        }
    }
  • FlatJoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
  • JoinedStreams定义了私有静态类FlatJoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将FlatJoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
  • FlatJoinFunction定义的join方法,接收的是两个对象类型参数,而FlatJoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数

小结

  • DataStream提供了join方法,用于执行join操作,它返回的是JoinedStreams;JoinedStreams主要是提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作
  • apply操作可以接收JoinFunction或者FlatJoinFunction,它内部是使用DataStream的coGroup方法创建CoGroupedStreams,之后将自身的where及equalTo的keySelector、windowAssigner、trigger、evictor、allowedLateness都设置给CoGroupedStreams,最后调用CoGroupedStreams的WithWindow对象的apply方法;JoinFunction及FlatJoinFunction都继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction;而FlatJoinFunction与JoinFunction的join的不同之处的在于FlatJoinFunction的join方法多了Collector参数,可以用来发射0条、1条或者多条数据,所以是Flat命名
  • CoGroupedStreams的WithWindow对象的apply方法与JoinedStreams的WithWindow对象的apply方法参数不同,CoGroupedStreams的WithWindow的apply方法接收的是CoGroupFunction,因而JoinedStreams的WithWindow对象的apply方法内部将JoinFunction或者FlatJoinFunction包装为CoGroupFunction(JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装),然后去调用CoGroupedStreams的WithWindow的apply方法;JoinCoGroupFunction与FlatJoinCoGroupFunction都继承了WrappingFunction(它继承了AbstractRichFunction,这里它覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction),同时实现CoGroupFunction接口定义的coGroup方法,不同的是一个是包装JoinFunction,一个是包装FlatJoinFunction,不同的是后者是包装FlatJoinFunction,因而join方法多传递了out参数

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实例
  • DataStream.join
  • JoinedStreams
  • Where
  • EqualTo
  • WithWindow
    • JoinFunction
      • FlatJoinFunction
      • CoGroupedStreams
        • CoGroupFunction
          • WrappingFunction
            • JoinCoGroupFunction
              • FlatJoinCoGroupFunction
              • 小结
              • doc
              相关产品与服务
              大数据
              全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档