首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

文心一言 VS 讯飞星火 VS chatgpt (64)-- 算法导论6.5 3题

文心一言 VS 讯飞星火 VS chatgpt (64)-- 算法导论6.5 3题

三、要求用最小堆实现最小优先队列,请写出 HEAP-MINIMUM、HEAP-EXTRACT-MIN、HEAP DECREASE-KEY 和 MIN-HEAP-INSERT 的伪代码。

文心一言:

以下是使用最小堆实现最小优先队列的 HEAP-MINIMUM、HEAP-EXTRACT-MIN、HEAP-DECREASE-KEY 和 MIN-HEAP-INSERT 的伪代码:

这些函数实现了最小优先队列的基本操作。其中,min_heap_insert 插入元素到最小堆中,min_heap_extract_min 提取最小元素并保持最小堆性质,min_heap_decrease_key 修改元素值并保持最小堆性质,heapify_up 和 heapify_down 分别是上移和下移元素直到其满足堆的性质的辅助函数。

在这里插入图片描述

在这里插入图片描述讯飞星火:

1. HEAP-MINIMUM 伪代码:

2. HEAP-EXTRACT-MIN 伪代码:

3. HEAP DECREASE-KEY 伪代码:

4. MIN-HEAP-INSERT 伪代码:

在这里插入图片描述

在这里插入图片描述360智脑:

HEAP-MINIMUM(root):

HEAP-EXTRACT-MIN(root):

HEAP DECREASE-KEY(root):

MIN-HEAP-INSERT(root):

在这里插入图片描述

在这里插入图片描述chatglm:

以下是使用最小堆实现最小优先队列的伪代码:

这些伪代码函数可以通过编程语言的堆实现来实现最小优先队列。在这些函数中,HEAP-MINIMUM 函数用于在堆中查找最小元素,HEAP-EXTRACT-MIN 函数用于从堆中提取最小元素,HEAP-DECREASE-KEY 函数用于减小堆中某个元素的优先级,MIN-HEAP-INSERT 函数用于将元素插入到最小堆中并返回新的元素个数。使用这些函数,可以实现最小优先队列的插入、删除和查找操作。

在这里插入图片描述

在这里插入图片描述通义千问:

下面是最小堆常用操作的伪代码:

HEAP-MINIMUM: 对堆顶元素进行比较,如果比堆底元素小,则将堆底元素替换为堆顶元素;否则,保持堆顶元素不变。

HEAP-EXTRACT-MIN: 取出堆顶元素,并将堆顶元素的父节点(如果存在)移动至其子节点中最小的一个。如果堆顶元素没有子节点,则将堆底元素移动至堆顶,并将堆底元素的父节点(如果存在)移动至其子节点中最小的一个。

HEAP-DECREASE-KEY: 对堆顶元素的键值进行比较,如果比堆底元素的键值小,则将堆底元素替换为堆顶元素;否则,保持堆顶元素不变。

MIN-HEAP-INSERT: 将元素插入堆中,并检查插入后的堆是否满足最小堆的性质。如果不满足,则对堆进行调整,直到满足最小堆的性质为止。

在这里插入图片描述天工:

下面是使用最小堆实现最小优先队列的伪代码:

HEAP-MINIMUM:

1.如果堆为空,则返回 -1;

2.否则,取出堆顶元素 x,如果 x 大于等于 key,则返回 x;

3.否则,执行下面的步骤,直到找到一个元素 x 满足条件 x 大于等于 key:

a. 取出堆顶元素 y,将 y 替换为 x;

b. 执行 HEAP-EXTRACT-MIN。

HEAP-EXTRACT-MIN:

1.如果堆为空,则返回 -1;

2.否则,取出堆顶元素 x,将 x 替换为堆顶元素 y,并将 y 删除;

3.执行下面的步骤,直到堆为空:

a. 执行 HEAP-DECREASE-KEY。

HEAP-DECREASE-KEY:

1.如果堆为空,则返回 -1;

2.否则,取出堆顶元素 x,将 x 替换为堆顶元素 x 的下一个元素 y;

3.执行下面的步骤,直到堆为空:

a. 执行 HEAP-EXTRACT-MIN。

MIN-HEAP-INSERT:

1.如果堆为空,则将元素 x 插入堆中;

2.否则,取出堆顶元素 x,将元素 x 插入堆中,并将元素 x 替换为堆顶元素 y;

3.执行下面的步骤,直到堆中只有一个元素:

a. 执行 HEAP-EXTRACT-MIN。

在这里插入图片描述chatgpt:

以下是使用最小堆实现最小优先队列的伪代码:

HEAP-MINIMUM(A): 返回 A[0] // A[0] 是最小堆中的最小元素

HEAP-EXTRACT-MIN(A): 如果 A.length < 1: 返回 错误(堆为空) min = A[0] // 最小元素为根节点 A[0] = A[A.length - 1] // 将最后一个元素放到根节点 A.length = A.length - 1 // 去除最后一个元素 MIN-HEAPIFY(A, 0) // 保持最小堆的性质 返回 min

HEAP-DECREASE-KEY(A, i, key): 如果 key > A[i]: 返回 错误(新的键值大于当前键值) A[i] = key // 更新键值 while i > 0 并且 A[PARENT(i)] > A[i]: // 如果父节点的键值大于当前节点的键值 交换 A[i] 和 A[PARENT(i)] // 交换节点和其父节点 i = PARENT(i) // 上移节点,继续检查

MIN-HEAP-INSERT(A, key): A.length = A.length + 1 // 扩展堆的容量 A[A.length - 1] = +∞ // 将新节点设置为正无穷大 HEAP-DECREASE-KEY(A, A.length - 1, key) // 更新节点键值,保持最小堆的性质

其中,PARENT(i) 返回节点索引 i 的父节点索引,MIN-HEAPIFY(A, i) 用于保持最小堆的性质,将节点 i 向下调整以满足最小堆的条件。

在这里插入图片描述总结

在这里插入图片描述

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OijEpdHDOdQFwL6DkrZ0CSyA0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券