首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题

八、HEAP-DELETE(A,i)操作能够将结点 i 从堆 A 中删除。对于一个包含 n个元素的堆,请设计一个能够在 O(lgn)时间内完成的 HEAP-DELETE 操作。

文心一言:

要在 O(log n) 时间内完成 HEAP-DELETE 操作,可以使用以下方法:

1.首先找到要删除的节点 i 的父节点。可以从根节点开始,依次向上遍历,直到找到节点 i。

2.比较节点 i 的值和父节点的值,如果 i 的值比父节点的值大,则将父节点的值与 i 的值交换。

3.然后将 i 的父节点从堆中删除,即执行 HEAP-DELETE(A,父节点)。

4.重复步骤 2 和步骤 3,直到节点 i 的值不再是堆中的最大值。

这个方法的的时间复杂度是 O(log n),因为每次操作都会将堆的深度减少一半,最多执行 log n 次操作。

以下是这个算法的伪代码:

这里 swap 函数用于交换两个元素的值,heapDelete 函数中用它来交换节点 i 和其父节点的值。

在这里插入图片描述讯飞星火:

为了在 O(lgn) 时间内完成 HEAP-DELETE 操作,我们可以使用以下策略:

1.从堆的根节点开始,找到要删除的结点 i。

2.如果 i 是根节点,那么直接将左子树的最大结点提升为新的根节点,并删除 i。

3.如果 i 不是根节点,那么比较 i 和其父节点的值。如果 i 的值小于等于其父节点的值,那么将 i 从其父节点的左子树中删除;否则,将 i 从其父节点的右子树中删除。重复这个过程,直到找到要删除的结点 i。

4.在删除结点 i 之后,重新调整堆的结构以保持堆的性质。

以下是一个 Python 实现的示例:

这个实现中, 方法就是 HEAP-DELETE(A,i) 操作。它首先检查要删除的结点 i 是否在堆中,然后删除该结点并重新调整堆的结构。

在这里插入图片描述

在这里插入图片描述360智脑:

这是一个经典的算法问题,可以使用二叉堆的插入和删除操作的时间复杂度为 O(logn),因此可以在 O(logn) 的时间内完成 HEAP-DELETE 操作。具体实现方式可以是在堆顶查找需要删除的元素,然后将其从堆中移除并重新插入堆中即可。

在这里插入图片描述chatglm:

为了设计一个能够在 O(lgn) 时间内完成的 HEAP-DELETE 操作,我们可以使用二分查找的方法来找到结点 i 在堆中的位置。具体步骤如下:

1.初始化一个指针 p,指向堆 A 中的第一个元素。

2.使用二分查找的方法,找到结点 i 在堆中的位置。具体来说,我们可以先将 p 指向堆的中间位置,然后分别比较 p 左边和右边的元素与 i 的大小关系。如果 p 左边的元素比 i 小,则说明 i 在 p 左边的子树中;否则,如果 p 左边的元素比 i 大,则说明 i 在 p 右边的子树中。我们可以根据这个判断,将 p 指向对应的子树中,并重复上述步骤,直到找到结点 i。

3.将堆顶元素(即 p 指向的元素)与结点 i 交换位置。

4.调整堆,使得交换后的堆仍满足堆的性质。具体来说,我们可以从 p 开始,依次向下调整堆,直到调整到叶子节点为止。

由于使用二分查找的方法,每次查找都可以将查找范围缩小一半,因此,对于一个包含 n 个元素的堆,最多需要进行 logn 次查找。而且,在调整堆的过程中,我们只需要对涉及到的元素进行交换和调整,因此,总的时间复杂度为 O(lgn)。

因此,我们可以设计一个能够在 O(lgn) 时间内完成的 HEAP-DELETE 操作,具体实现如下:

其中,swap 函数用于交换两个元素,adjust_heap 函数用于调整堆。在 adjust_heap 函数中,我们可以使用递归的方式,从 p 开始,依次向下调整堆,直到调整到叶子节点为止。具体来说,我们可以依次对左右子树进行调整,如果左子树的深度小于右子树的深度,则将左子树作为当前节点的子树,否则将右子树作为当前节点的子树。在调整子树的过程中,我们只需要对涉及到的元素进行交换和调整,直到子树满足堆的性质为止。

在这里插入图片描述

在这里插入图片描述通义千问:

可以采用双向链表来维护堆结构,同时利用堆的特性保证删除操作的时间复杂度为 O(lgn)。

具体实现如下:

1.定义一个结点类 Node,包含结点的值和指向左右子结点的指针。

2.定义一个双向链表 Head,表示堆的根结点。将 Head 指向的结点标记为堆顶结点。

3.在插入结点时,先将新结点插入到双向链表的末尾,然后进行向下调整,使新结点成为堆顶结点。

4.在删除结点时,先将堆顶结点指向删除结点的右子结点,然后将删除结点的左子结点指向堆顶结点,最后进行向下调整,使堆保持堆的特性。

代码如下:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述天工:

要在O(lgn)时间内完成堆删除操作,可以使用以下方法:

1.将堆的根节点移到堆的最后一个位置。

2.将堆的最后一个元素删除。

3.如果堆的最后一个元素是根节点,那么将根节点移到堆的倒数第二个位置。

4.如果堆的最后一个元素不是根节点,那么将根节点移到堆的倒数第二个位置。

这个方法的时间复杂度为O(lgn),因为每次删除一个元素后,堆的大小减少了1,所以删除n个元素需要执行n次操作,每次操作需要O(lgn)的时间,因此总时间复杂度为O(nlgn)。

在这里插入图片描述chatgpt:

要设计一个能够在 O(lgn) 时间内完成 HEAP-DELETE 操作,可以按照以下步骤进行:

1.首先,将要删除的节点与堆的最后一个节点进行交换。这样做可以保持堆的完全性质。

• 将堆中第 i 个节点与最后一个节点进行交换。

2.接下来,调整交换后的堆,使其仍然满足堆的性质。

• 如果交换后的节点比其父节点更小(对于最小堆)或者更大(对于最大堆),则需要将该节点向上移动。

• 如果交换后的节点比其子节点更大(对于最大堆)或者更小(对于最小堆),则需要将该节点向下移动。

3.重复步骤 2,直到堆的性质被恢复。

下面是一个示例的实现(使用 Python):

该实现通过不断地向上调整和向下调整的过程,保持了堆的性质,并且在最坏情况下的时间复杂度为 O(lgn)。

在这里插入图片描述

在这里插入图片描述总结

在这里插入图片描述

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OdbogTTm6hdX4SMLqNFCxDZw0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券