层次聚类和K-means聚类,可以说是聚类算法里面最基本的两种方法(wiki的cluster analysis页面都把它们排前两位)。这次要探讨的,则是两个相对“高级”一点的方法:谱聚类和chameleon聚类。 1、谱聚类 一般说到谱聚类,都是从降维(Dimensionality Reduction)或者是图分割(Graph Cut)的角度来理解。但是实际上,从物理学的简正模式的角度,可以更为直观地理解这个算法的本质。 这里先把基本的算法步骤写出来,然后再讨论算法的原理。 谱聚类
Rose今天主要介绍一下EMD算法原理与Python实现。关于EMD算法之前介绍过《EMD算法之Hilbert-Huang Transform原理详解和案例分析》,
如果只是从事简单的数据分析,其实numpy的用处并不是很大。简单了解一下numpy,学好pandas已经够用,尤其是对于结构化或表格化数据。但是精通面向数组的编程和思维方式是成为python科学计算牛人的关键一步。
SSVEP信号中含有自发脑电和大量外界干扰信号,属于典型的非线性非平稳信号。传统的滤波方法通常不满足对非线性非平稳分析的条件,1998年黄鄂提出希尔伯特黄变换(HHT)方法,其中包含经验模式分解(EMD)和希尔伯特变换(HT)两部分。EMD可以将原始信号分解成为一系列固有模态函数(IMF) [1],IMF分量是具有时变频率的震荡函数,能够反映出非平稳信号的局部特征,用它对非线性非平稳的SSVEP信号进行分解比较合适。
人有时候走着走着,放不下的东西太多,就会迷失自己。其实回归初心,换一个角度去看待问题,一切就变得豁然开朗了。
是一个态。如果我们不知道这个系统的态,或者我们考虑一个统计意义上的混合态,那么算符的期望值由下式给定
上面这些公式对量子纠缠的研究很有用。纠缠跟黑洞热力学和热态的纯态化有关。我们考虑希尔伯特空间
对于一个单或多行列式波函数方法(例如RHF, MP2, CCSD, CASCI, CASSCF等等),可将电荷密度(charge density)
量子相位估计算法(quantum phase estimation,QPE)也称作量子特征值估计算法,是很多量子算法的基本步骤,其中包括Shor`s算法(秀尔算法)和HHL算法(线性方程组的量子算法)。它的作用就是快速的估计一个酉变换的特征值。由于酉矩阵拥有一个性质:酉矩阵的特征值都是模为1的复数。所以对酉矩阵而言,其特征值和相位基本是对等的。
我们将介绍什么是相机的内参矩阵,以及如何使用它将RGBD(红色、蓝色、绿色、深度)图像转换为3D空间。获取RGBD图像的方式有很多种,例如Kinect相机之类的系统,这些系统通过测量红外光的飞行时间来计算深度信息。但也有传闻称iPhone 12将LiDAR集成到其相机系统中。对于无人驾驶汽车而言,最重要的数据来源与汽车上的LiDAR以及标准RGB摄像头。在本文中,我们不会详细介绍如何获取数据。
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,
如下所示为一方阵 在 matlab 输入矩阵: A = [1 2 4; 407 9 1 3]; 2. 2 查阅 matlab help 可以知道,利用 eig 函数可以快速求解矩阵的特征值与特 征……
本文用了一个经典的例子,从数据探索,模型假设,模型训练,模型可视化,step by step 让读者体验机器学习完整的流程。 导语 在模式分类和机器学习实践中,线性判别分析(Linear Discriminant Analysis, LDA)方法常被用于数据预处理中的降维(dimensionality reduction)步骤。LDA在保证良好的类别区分度的前提下,将数据集向更低维空间投影,以求在避免过拟合(“维数灾难”)的同时,减小计算消耗。 Ronald A. Fisher 在1936年(The U
Python科学计算——Numpy Numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架。 基本类型(array) array,也就是数组,是numpy中最基础的数据结构,最关键的属性是维度和元素类型,在numpy中,可以非常方便地创建各种不同类型的多维数组,并且执行一些基本
经典的「没有免费午餐定理」表明:如果某种学习算法在某些方面比另一种学习算法更优,则肯定会在其它某些方面弱于另一种学习算法。
本文对插值、平稳假设、变异函数、克里格等常用的地学计算概念加以介绍,并对相关公式进行推导。
Eigendecomposition的概念可见https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
\[H\left|\psi(t)\right>=E\left|\psi(t)\right> \]
但球场上不只有“中悲”“大悲”“超大悲”,还是有让人热血沸腾的时刻:西班牙队“血溅七步”,大胜哥斯达黎加,创造了本届杯赛截至目前的净胜球纪录。
求解线性方程组是科学计算中的一个基础问题,也可利用线性方程组构造复杂的算法,如数值计算中的插值与拟合、大数据中的线性回归、主成分分析等。而正是由于线性求解问题在学科中的基础性作用,其在科学、工程、金融、经济应用、计算机科学等领域也应用广泛,如常见的天气预报,需要通过建立并求解包含百万变量的线性方程组实现对大气中类似温度、气压、湿度等的模拟和预测;如销量预测,需要采用线性回归方式的时序预测方法进行预测。
来源:机器之心 本文长度为3071字,建议阅读6分钟 本文在 MNIST 上对VAE和GAN这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/ Generative-Models 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 最近遇到一个问题,如何读取仪表中的指针指向的刻度 解决方法有多种,比如,方案一:模板匹配+边缘检测+霍夫直线检测,方案二:神将网络(CNN)目标定位等, 其中CNN就有点麻烦了,需要一定数量的训练样本,太麻烦,而方案一太普通,最后我采用了方案三, 方案三:模板匹配+k-means+直线拟合 具体做法如下: 首先说一下模板匹配,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置,如果模板找
在前面的几篇文章中我们分别介绍过numpy中的爱因斯坦求和函数Einsum和MindSpore框架中的爱因斯坦求和算子Einsum的基本用法。而我们需要知道,爱因斯坦求和其实还可以实现非常多的功能,甚至可以替代大部分的矩阵运算,比如常见的点乘、元素乘、求和等等这些都是可以的。那我们就逐一看一下可以用爱因斯坦求和来替代的那些函数和方法。
选自GitHub 机器之心编译 参与:路雪、李泽南 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。本文中,作者在 MNIST 上对这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/Generative-Models 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经有了数百万张图像
开篇话: 前段时间数说君征原创稿,果真得到了不少牛人的赐稿,比如本文的作者Ansta,作为数说工作室的特约撰稿人,将会承担下“【SAS Says】高级篇” 的写作。 SAS基础篇中,我们介绍了一些入门的东西。在进阶篇中,我们将介绍一些统计方面的SAS应用,包括主成分分析、判别分析、非参数检验、logistic模型等等。进阶篇要稍晚些与大家见面,我们首先邀请Ansta为大家带来高级篇,高级篇将介绍SAS的IML模块、SQL模块、宏语句以及贝叶斯(插一句,如果大家觉得好,求打赏,1元不嫌少,5元不嫌多;如果大
当样本不符合理论分布假设时,求样本统计量的置信区间就成为一个难题。而自助法(Bootstrap)的思路是对原始样本重复抽样产生多个新样本,针对每个样本求取统计量,然后得到它的经验分布,再通过求经验分布的分位数来得到统计量的置信区间,这种方法不需要对统计量有任何理论分布的假设。一般认为,只要样本具有代表性,采用自助法需要的原始样本只要20-30个,重复抽样1000次就能达到满意的结果。 在R中进行自助法是利用boot扩展包,其流程如下: 编写一个求取统计量的自定义函数 将上面的函数放入boot()函数中
说明本文主要是关于Numpy的一些总结,包括他们的一些运算公式,我整理一下方便日后查阅公式!
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享。 (除了贝叶斯优化等方法)其它简单的验证有两种方法:1、通过经常使用某个模型的经验和高超的数学知识。2、通过交叉验证的方法,逐个来验证。 很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_
本文简单介绍NumPy模块的两个基本对象ndarray、ufunc,介绍ndarray对象的几种生成方法及如何存取其元素、如何操作矩阵或多维数组、如何进行数据合并与展平等。最后说明通用函数及广播机制。
编译|黄念 校对|丁一 引言 艺术之美根植于其所传达的信息。有时候,现实并非我们所看到或感知到的。达芬奇(Da Vinci)和毕加索(Picasso)等艺术家都通过其具有特定主题的非凡艺术品,试图让人们更加接近现实。 数据科学家并不逊色于艺术家。他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解。更有趣的是,一旦接触到任何可视化的内容、数据时,人类会有更强烈的知觉、认知和交流。 在数据科学中,有多种工具可以进行可视化。在本文中,我展示了使用Python来实现的各种可视化图表
Apache Spark社区刚刚发布了1.5版本,大家一定想知道这个版本的主要变化,这篇文章告诉你答案。 DataFrame执行后端优化(Tungsten第一阶段) DataFrame可以说是整个Spark项目最核心的部分,在1.5这个开发周期内最大的变化就是Tungsten项目的第一阶段已经完成。主要的变化是由Spark自己来管理内存而不是使用JVM,这样可以避免JVM GC带来的性能损失。内存中的Java对象被存储成Spark自己的二进制格式,计算直接发生在二进制格式上,省去了序列化和反序列化时间。同
慢特征分析 (slow feature analysis, SFA) 是使用来自时间信号的信息来学习不
31日从华清北联合研究院获悉,该所研究初步发现,传统艺能#学习Python可抑制新型冠状病毒#。此前,华清北联合攻关组启动由带师兄牵头的抗新型冠状病毒感染肺炎药物研究瞎胡闹团队,在无视前期SARS相关研究和药物发现成果基础上,聚焦针对该病毒的治疗候选新药筛选、评价和老药新用研究。
8月15日消息,尽管目前半导体市场因终端需求减弱受到不小冲击,但是半导体人才依旧紧缺。根据中国台湾“104人力银行”公布的数据显示,今年一季度平均每月的半导体人才需求增至3.5万人,同比增长39.8%,人才供需缺口(求供比)逐渐扩大至3.4,代表平均每位求职者可分到3.4个半导体业工作机会,高于整体市场的1.58。
这样的场景你也可能遇到:调试的时候,我需要追踪某一个 Python 对象的属性变化,比如对象 someobj = SomeClass(),当 someobj 添加了一个属性( someobj.age = 14)或者修改了属性的值 (someobj.age = 18)的时候,打印这些变化。
我想通过学习Python语言来学习数据科学,所以我在谷歌上搜索:“我想通过学习Python语言来学习数据科学。而在谷歌,不一会儿的功夫就列出所有关于Python语言学习的链接。然后,你会对于无数可行的关于学习Python语言的相关链接而感到困惑。最终,你会因此停下来反思:“我到底该从哪里入手?”。 真的是这样吗?不要担心。因为你以前从未遇到过这样的情况。 这里有很多可用的资源,它们将引导你如何学习Python从而学会编程和数据科学。而其中的问题是它很难找到一个结构化的方法来掌握这门语言。为了解
Function translates and normalises a set of 2D homogeneous points so that their centroid is at the origin and their mean distance from the origin is sqrt(2). 将2d 齐次点的中心点坐标转移到原点,2d 齐次点和原点的平均距离为 2 \sqrt{2} 2 。
基于scikit-learn的机器学习简介 作者:陆勤(专注机器学习研究和应用) 基于scikit-learn的机器学习简介,包括以下内容: 机器学习:问题集 装载实例数据 学习和预测 模型持久性 约定俗称 机器学习:问题集 一般而言,一个学习问题会考虑n个样本数据集,并尝试着预测不知道数据的特性。每个样本可能包含多个属性,称之为维度或者变量或者特征。可以用一个数据矩阵来描述,行表示一个个实例,列表示一个个特征。 机器学习可以粗略地划分为: 监督学习,包括分类和回归,都属于预测问题的范畴,前者预测实例
简单的说,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。
这类方法只用很少的数据,就能让大模型在原本表现没那么好的下游任务中“脱颖而出”,成为这个任务的专家。
什么是算法? 简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。(来源:homas H. Cormen, Chales E. Leiserson 《算法导论第3版》) 可以这样理解,算法是用来解决特定问题的一系列步骤(不仅计算机需要算法,我们在日常生活中也在使用算法)。算法必须具备如下3个重要特性: 有穷性,执行有限步骤后,算法必须中止。 确切性,算法的每个步骤都必须确切定义。 可行性,特定算法须可以在特定的时间内解决特定问题, 其实,算法虽然广泛应用在计算机领域,但却
简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。
简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。(来源:homas H. Cormen, Chales E. Leiserson 《算法导论第3版》)
2、确切性,算法的每个步骤都必须确切定义。 3、可行性,特定算法须可以在特定的时间内解决特定问题。
aHR0cHM6Ly9ndWJhLmVhc3Rtb25leS5jb20vcmFuay9zdG9jaz9jb2RlPTYwMDAzMQ==
在《分析激发态的跃迁类型》一文中我们介绍了如何分析电子激发的跃迁性质。在TD-DFT框架下,通过程序输出的轨道跃迁系数即可计算出相应的跃迁贡献,进而可以根据占主要贡献的轨道的特征来分析跃迁属性。在某些体系中,可能无法用一两对轨道的跃迁来简单描述跃迁的属性,此时可以借助自然跃迁轨道(natural transition orbital, NTO)来进行分析。关于NTO的原理,可以参考其原始文献J. Chem. Phys. 2003, 118, 4775。在进行TD-DFT计算后,可以得到基态到某激发态之间的跃迁密度矩阵T,其维度为nocc×nvir。将T进行SVD分解,即
领取专属 10元无门槛券
手把手带您无忧上云