1.安装Python(推荐安装Anaconda)[这里是windows系统下的安装]
Raw对象主要用来存储连续型数据,核心数据为n_channels和times,也包含Info对象。
默认情况下,MNE-Python将自动重新参考EEG信号,以使用平均参考(请参见下文)。 这个函数可以显示指定所需的EEG参考。这可以是现有电极或新的虚拟通道。 此函数将根据所需参考重新参考数据,并防止MNE-Python自动添加平均参考投影。
有时个别通道出现故障,提供的数据中噪声过高而无法使用。 通过使用MNE-Python,可以很容易地跟踪分析流中的这些通道,而无需实际删除这些通道中的数据。
在前面我们介绍过Evoked的数据结构以及如何创建Evoked对象《Python-EEG工具库MNE中文教程(4)-MNE中数据结构Evoked及其对象创建》以及上文介绍了Evoked的数据可视化《Python-可视化Evoked数据》。
Python-EEG工具库MNE中文教程(4)-MNE中数据结构Evoked及其对象创建
脑电分析系列[MNE-Python-4]| MNE中数据结构Evoked及其对象创建
有时个别通道出现故障,提供的数据中噪声过高而无法使用。 通过使用MNE-Python,可以很容易地跟踪分析流中的这些通道,而无需实际删除这些通道中的数据。 它具体实现是通过跟踪列表中的坏通道索引并在执行分析或绘图任务时查看该列表。坏通道列表存储在Info对象的'bads'字段中,该字段附加到Raw、Epochs和诱发对象。
本案例演示使用Epochs元数据。关于Epochs数据结构:可以查看文章Python-EEG工具库MNE中文教程(2)-MNE中数据结构Epoch及其创建方法和Python-EEG工具库MNE中文教程(3)-MNE中数据结构Epoch及其用法简介
今天Rose小哥结合案例代码给大家介绍一下MNE是如何从Raw对象中解析event的。
从连续的脑电图信号中提取一些特定时间窗口的信号,这些时间窗口可以称作为epochs。由于EEG是连续收集的,要分析脑电事件相关的电位时,需要将信号"切分"成时间片段,这些时间片段被锁定到某个事件(例如刺激)中的时间片段。 比如在EEGLAB分析中,EEGLAB将连续数据视为由一个较长的时期(long epoch)组成,而将数据切分后,它由多个较小的时期(small epoch)组成。
在本教程中,我们将介绍传感器协方差计算的基础知识,并构建一个噪声协方差矩阵,该矩阵可用于计算最小范数逆解.
在前面一篇分享(脑电分析系列[MNE-Python-10]| 信号空间投影SSP数学原理)中提到,投影矩阵将根据您试图投射出的噪声种类而变化。信号空间投影(SSP)是一种通过比较有无感兴趣信号的测量值来估算投影矩阵应该是什么的方法。例如,您可以进行其他“空房间”测量,以记录没有对象存在时传感器上的活动。通过查看空房间测量中各MEG传感器的活动空间模式,可以创建一个或多个N维向量,以给出传感器空间中环境噪声的“方向”(类似于上面示例中“触发器的影响”的向量)。SSP通常也用于消除心跳和眼睛运动伪影,在用于消除心跳和眼睛运动伪影的案例中,就不是通过空房间录制,而是通过检测伪影,提取伪影周围的时间段(epochs)并求平均值来估计噪声的方向。有关示例,请参见使用SSP修复工件。
EDF,全称是 European Data Format,是一种标准文件格式,用于交换和存储医疗时间序列。
Rose小哥今天主要介绍一下MNE-Python中进行脑电图处理和事件相关电位(ERP)。
有后台留言问,代码是在哪里运行的。这里说明一下,案例介绍的代码均在jupyter notebook中运行的,当然这些代码也可以在PyCharm等IDE中运行(不过可能存在在不同环境下代码需要稍微改动的情况。)
本案例通过对多导睡眠图(Polysomnography,PSG)数据进行睡眠阶段的分类来判断睡眠类型。
本教程为脑机学习者Rose发表于公众号:脑机接口社区(微信号:Brain_Computer),QQ交流群:903290195
脑电分析系列[MNE-Python-2]| MNE中数据结构Epoch及其创建方法
Epochs对象是一种将连续数据表示为时间段集合的方法, 其存储在数组(n_events,n_channels,n_times)
本案例通过对多导睡眠图(Polysomnography,PSG)数据进行睡眠阶段的分类来判断睡眠类型。 训练:对Alice的睡眠数据进行训练;
一些由电源线造成的伪影具有某些特定范围的频率(比如,由电网产生的电力线噪声,主要由50Hz(或60Hz取决于实验的地理位置)的尖峰组成)。因此可以通过滤波来固定。
有后台留言问,代码是在哪里运行的。这里说明一下,案例介绍的代码均在jupyter notebook中运行的,当然这些代码也可以在PyCharm等IDE中运行(不过可能存在再不同环境下代码需要稍微改动的情况。)
安置在头皮上的电极为作用电极(active electrode)。放置在身体相对零电位点的电极即为参考电极(reference electrode),也称为参考电极或标准电极。
脑机接口(Brain-Computer Interface,BCI)是连接人脑和机器的桥梁,为实现人机无缝交互提供了前所未有的可能。本文将详细介绍如何使用人工智能技术构建脑机接口,使人脑能够直接与计算机进行沟通和控制。
本案例主要介绍如何向原始(Raw)对象添加注释,以及在数据处理的后期阶段如何使用注释。
Evoked potential(EP)诱发电位或诱发反应是指在出现诸如闪光或纯音之类的刺激后,从人类或其他动物的神经系统,特别是大脑的特定部分记录的特定模式的电位。不同形式和类型的刺激会产生不同类型的电位。
.set文件记录的是采集的信息,主要内容包括通道数,事件数,开始时间与结束时间等。
从上图上可以看到在整个记录中有几个振幅不同的脉冲。这些脉冲对应于在采集过程中呈现给受试者的不同刺激。
在脑电定位研究中,一般都用电流偶极子作为源的模型。电流偶极子是两个相距很近带有等量异性电量的点电荷,且其电量随时间而变化(相当于两点之间有电流)。
功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。
相信很多人第一次接触epoch时,都会有疑惑,这个词在EEG中到底指的是什么。 下面将详细说明一下。
这里介绍的所有函数基本上都是高级matplotlib函数,所有方法均返回matplotlib图形实例的句柄。
Python 计算机视觉 SimpleCV—开源的计算机视觉框架,可以访问如OpenCV等高性能计算机视觉库。使用Python编写,可以在Mac、Windows以及Ubuntu上运行。 自然语言处理 NLTK —一个领先的平台,用来编写处理人类语言数据的Python程序 Pattern—Python可用的web挖掘模块,包括自然语言处理、机器学习等工具。 TextBlob—为普通自然语言处理任务提供一致的API,以NLTK和Pattern为基础,并和两者都能很好兼容。 jieba—中文断词工具。 Sno
领取专属 10元无门槛券
手把手带您无忧上云