最近多次看到用SQL查询连续打卡信息问题,自己也实践一波。抛开问题本身,也是对MySQL窗口函数和自定义变量用法的一种练习。
从这个题目来看,其实包含了两个要求,第一个要求就是:从MySQL数据表中查询一条随机的记录。第二个要求就是要保证效率最高。
MySQL系列文章到目前已经更新十几篇,从数据类型谈到了备份恢复再到主从同步分库分表,从本篇开始,会花几篇重点谈谈MySQL基础部分,而本篇我们重点来讲讲我们日常开发中最常见的一种查询:分页查询。
简单是最好的策略。 数据服务公司如何构建数据仓库?我曾担任一家平台的实时计算工程师,该平台旨在允许用户搜索公司的业务数据、财务和法律详细信息。已采集300多个维度、3亿+实体信息。我和我的同事的职责是确保这些数据的实时更新,以便我们能够为我们的注册用户提供最新的信息。这就是我们数据仓库面向客户的功能。除此之外,它还需要支持我们内部营销和运营团队的临时查询和用户细分,这是随着我们业务的增长而出现的新需求。
任何一个系统,分页查询都是必不可少的吧 ,MySQL中的分页查询 就是 limit呗 ,你有没有感觉到 越往后翻页越慢 ,常见的SQL如下
ps:这个数据库优化问题在面试中还是比较常见的,阿里、腾讯、用友、京东、小红书等中大厂的面试都问过这个问题。
在日常开发中,我们会经常遇到某一张表中某列或者多列的值是唯一的,不能重复插入同一个值。遇到这样的设计,我们一般会设置一个unique的索引。也就是在要求值不能是重复的列或者多列上添加一个唯一索引。例如,会执行这一条SQL语句:
使用正则表达式查询 正则表达式通常被用来检索或替换那些符合某个模式的文本内容,根据指定的匹配模式匹配文本中符合要求的特殊字符串。例如,从一个文本文件中提取电话号码,查找一篇文章中重复的单词或者替换用户输入的某些敏感词语等,这些地方都可以使用正则表达式。正则表达式强大而且灵活,可以应用于非常复杂的查询。 MySQL中使用REGEXP关键字指定正则表达式的字符匹配模式。下表列出了REGEXP操作符中常用字符匹配列表。 [请添加图片描述] 1. 查询以特定字符或字符串开头的记录 字符‘^’匹配以特定字符或者字符串
面试官:咱们聊聊mysql的自增id。mysql自增id给我们的自增主键定义带来了很大的方便,但是经常mysql的自增id会有不连续情况,能说说什么场景下mysql的id会产生不连续吗我:我以一张表为例来解释一下,我先创建一张表zh_person,这张表包括4个字段,自增id,姓名name,性别sex和身份证号id_no,id_no上有唯一索引,sql如下 CREATE TABLE `zh_person` ( `id` MEDIUMINT(11) NOT NULL AUTO_INCREMENT, `
DROP PROCEDURE IF EXISTS test_insert;--如果存在此存储过程则删掉
SQL Server医疗信息管理系统数据库【英文版-源码】–(Medical Management System Database)
对于我们这些MySQL的使用者来说,MySQL其实就是一个软件,平时用的最多的就是查询功能。DBA时不时丢过来一些慢查询语句让优化,我们如果连查询是怎么执行的都不清楚还优化个毛线,所以是时候掌握真正的技术了。我们在第一章的时候就曾说过,MySQL Server有一个称为查询优化器的模块,一条查询语句进行语法解析之后就会被交给查询优化器来进行优化,优化的结果就是生成一个所谓的执行计划,这个执行计划表明了应该使用哪些索引进行查询,表之间的连接顺序是啥样的,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将查询结果返回给用户。不过查询优化这个主题有点儿大,在学会跑之前还得先学会走,所以本章先来瞅瞅MySQL怎么执行单表查询(就是FROM子句后边只有一个表,最简单的那种查询~)。不过需要强调的一点是,在学习本章前务必看过前边关于记录结构、数据页结构以及索引的部分,如果你不能保证这些东西已经完全掌握,那么本章不适合你。
最近在学习scrapy redis,在复习redis的同时打算把mysql和mongodb也复习一下,本篇为mysql篇,实例比较简单,学习sql还是要动手实操记的比较牢。
当我们使用 MySQL 进行数据存储时,一般会为一张表设置一个自增主键,当有数据行插入时,该主键字段则会根据步长与偏移量增长(默认每次+1)。
数据库层面,这也是我们主要集中关注的(虽然收效没那么大),类似于select * from table where age > 20 limit 1000000,10这种查询其实也是有可以优化的余地的. 这条语句需要load1000000数据然后基本上全部丢弃,只取10条当然比较慢. 当时我们可以修改为select * from table where id in (select id from table where age > 20 limit 1000000,10).这样虽然也load了一百万的数据,但是由于索引覆盖,要查询的所有字段都在索引中,所以速度会很快. 同时如果ID连续的好,我们还可以select * from table where id > 1000000 limit 10,效率也是不错的,优化的可能性有许多种,但是核心思想都一样,就是减少load的数据. 从需求的角度减少这种请求…主要是不做类似的需求(直接跳转到几百万页之后的具体某一页.只允许逐页查看或者按照给定的路线走,这样可预测,可缓存)以及防止ID泄漏且连续被人恶意攻击. 解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可.
一、优化分类 二、测试数据样例 参考mysql官方的sakina数据库。 三、使用mysql慢查询日志对有效率问题的sql进行监控 第一个,开启慢查询日志。第二个,慢查询日志存储位置。第三个,没有使用
因为MyISAM相对简单所以在效率上要优于InnoDB.如果系统读多,写少。对原子性要求低。那么MyISAM最好的选择。且MyISAM恢复速度快。可直接用备份覆盖恢复。
索引是与效率挂钩的,所以没有索引,可能会存在问题 索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
结合实例分析了自增值保存在哪里,自增值的修改策略,以及自增值不连续的四个场景,希望对各位小伙伴们有所帮助~
MySQL之单表查询 创建表 # 创建表 mysql> create table company.employee5( id int primary key AUTO_INCREMENT not null, name varchar(30) not null, sex enum('male','female') default 'male' not null, hire_date date not null, post varchar(50) not null,
统计一个表的数据量是经常遇到的需求,但是不同的表设计及不同的写法,统计性能差别会有较大的差异,下面就简单通过实验进行测试(大家测试的时候注意缓存的情况,否则影响测试结果)。
例 2:查询 tb_course 表中的 id 字段和 tb_students_info 表中的 course_id 字段相等的内容
在现代数据库系统中,MySQL的InnoDB存储引擎通过精巧的数据结构设计和高效的索引算法,为海量数据提供了稳定、快速且持久化的存储服务。
你没看错标题,在这篇文章我将会给大家介绍使用 SQL 生成斐波那契数列,并且不需要借助任何物理表。
编写一个 SQL 查询,获取 Employee 表中第 n 高的薪水(Salary)。
就访问数据库的应用而言,逻辑上只有一个表或一个索引,但是实际上这个表可能由数10个物理分区对象组成,每个分区都是一个独立的对象,可以独自处理,可以作为表的一部分进行处理。
索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调 sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度,即查找数据的速度。
我们日常做分页需求时,一般会用limit实现,但是当偏移量特别大的时候,查询效率就变得低下。本文将分4个方案,讨论如何优化MySQL百万数据的深分页问题.
表示从表employees 中取出从10000行开始的5行记录。看似只查询5条记录,实际这条SQL是先读取10005条记录,然后抛弃前10000条记录,然后读到后面5条想要的数据。没有添加单独的order by,表示通过主键排序。
最近刷完了LeetCode中的所有数据库题目,深深感到有些题目还是非常有深度和代表性的,而且比较贴合实际应用场景,特此发文以作分享。
签到功能相信大家都很熟悉了,功能就是用户每天可以签到一次,连续签到固定天数可以获得奖励。这里我把功能简单化:
本文若未特意说明使用的数据表,均为 MySQL索引(四)常见的索引优化手段 中的示例表。
在计算机系统中,锁(Lock)是一种同步机制,用于控制对共享资源的访问。它确保在任何给定时间内只有一个线程能够访问受保护的共享资源,从而避免了由并发访问导致的数据竞争和不一致问题。
看到标题,有的童鞋心中暗想“数据删除有什么可提的呢?不就是执行个delete语句吗?有什么难的呀?”其实呢数据删除没有你想的这么简单,一般情况下公司会明确的要求数据只能逻辑删除,不能物理删除。那什么优势逻辑删除,什么又是物理删除呢?
OFFSET 和 LIMIT 对于数据量少的项目来说是没有问题的,但是,当数据库里的数据量超过服务器内存能够存储的能力,并且需要对所有数据进行分页,问题就会出现,为了实现分页,每次收到分页请求时,数据库都需要进行低效的全表遍历。
回顾以前写的项目,发现在规范的时候,还是可以做点骚操作的。 假使以后还有新的项目用到了MySQL,那么肯定是要实践一番的。 为了准备,创建测试数据表(建表语句中默认使用utf8mb4以及utf8mb4_unicode_ci,感兴趣的读者可以自行搜索这两个配置):
当数据量过大时,在一页中查看数据是一件非常麻烦的事情,而且现在很多浏览器也都是分页显示数据,例如:
基本上所有的产品都离不开模糊搜索,无论是C端的社交产品、或者B端的一些SaaS服务。解决模糊搜索,我们最典型的解决方案是大家都可以想到的,使用SQL的like功能来实现,如下:
嵌套查询 用一条SQL语句得结果作为另外一条SQL语句得条件,效率不好把握 SELECT * FROM A WHERE id IN (SELECT id FROM B)
当数据量比较大的时候比如select * from u_user limit 10000000,10
首先要先介绍一下InnoDB逻辑存储结构和区的概念,它的所有数据都被逻辑地存放在表空间,表空间又由段,区,页组成。
MySQL从5.1版本开始支持分区的功能。分区是指根据一定的规则,数据库把一个表分解成多个更小的、更容易管理的部分。就访问数据库的应用而言,逻辑上只有一个表或一个索引,但是实际上这个表可能由数十个物理分区对象组成,每个分区都是一个独立的对象,可以独自处理,可以作为表的一部分进行处理。分区对应用来说是完全透明的,不影响应用的业务逻辑。 MySQL分区的优点主要包括以下4个方面: 和单个磁盘或者文件系统分区相比,可以存储更多数据。 优化查询:在Where子句中包含分区条件时,可以只扫描必要的一个或多个分区来
将具体的页数换成“下一页”按钮,假设每页显示20条记录,那么每次查询时都是用LIMIT返回21条记录并只显示20条,如果第21条存在,那么就显示“下一页”按钮。 先获取并缓存较多的数据(例如1000条),然后每次分页都从缓存中获取。这样做可以让应用程序根据结果集的大小采取不同策略,如果结果集少于1000,就可以在页面上显示所有的分页连接;如果结果集大于1000,则可以在页面上设计一个额外的“找到的结果多于1000条”之类的按钮。
从EXPLAIN的输出很难区分MySQL是要查询范围值,还是查询列表值。 EXPLAIN使用同样的词“ range”来描述这两种情况。例如,从type列来看, MySQL会把下面这种查询当作是“ range”类型:
MySQL数据库提供了四种默认的隔离级别,读未提交(read-uncommitted)、读已提交(或不可重复读)(read-committed)、可重复读(repeatable-read)、串行化(serializable)。
MySQL分区 是一种数据库优化的技术,它允许将一个大的表、索引或其子集分割成多个较小的、更易于管理的片段,这些片段称为“分区”。每个分区都可以独立于其他分区进行存储、备份、索引和其他操作。这种技术主要是为了改善大型数据库表的查询性能、维护的方便性以及数据管理效率。
前言:在当前的数据分析岗位中,多数人在做着SQL-Boy\SQL-Girl的工作,在数据分析面试中,SQL是必不可少的一环,对于SQL不仅有常见函数用法的考察,更多时候面试官喜欢出一些编程类题目,本文我们来了解一下那些典型的SQL面试题。(文中的问题均以MySQL为例)
ps:如果没看明白,那就来看下match_phrase query对应到mysql是怎样的吧!
领取专属 10元无门槛券
手把手带您无忧上云