set @a=0;select @a:=@a+1,user,host from mysql.user;
在分布式系统中,经常需要对大量的数据、消息、http请求等进行唯一标识,例如链路追踪traceId、身份标识号、订单流水号、操作记录流水号、优惠券id等等。
过去的项目开发中,我们常常选用的数据库是mysql,mysql以其体积小、速度快等优势,备受中小型项目的青睐。随着项目数据量的迅速增长,mysql已无法满足我们的项目需求,数据迁移迫在眉睫。经多方对比综合考虑,我们选择了tidb分布式数据库。但是数据迁移后我们遇到一个问题,之前mysql数据库中,我们采用的是自增id主键,可选用的tidb又对自增主键不是很友好,所以我们选用了另一种主键生成方式:Snowflake算法。
在我们从事技术的工作中,离不开中间件,mq就是常见的中间件之一,丢消息可能是我们经常遇到的,为啥会丢?丢了怎么破?测试能不能复现,很多同学知道一些似是而非的策略,或者后续通过日志或者数据库手段去排查,甚至日志也难以发现......
客观地说,如果一定要用uuid生成订单号这类东西也能凑合用,但是它有着罄竹难书的“罪行”:肉眼可见,它是无序的;长度是64位数字字母随机组合的字符串,占用空间巨大;完全不具备业务属性,也就是说使用uuid你完全无法推算出它到底是干嘛的;因为无序,所以趋势递增就更不用指望了;所以用uuid生成订单号就是自杀行为,适合它的是类似生成token令牌的场景。
正如上文提到的那样,在 Canal Instance 启动的时候,首先会查询日志管理器中查找上一次的同步位点,如果没有查询到,则默认会从最新的位点开始同步,但如果每一次启动 Instance 都从最后开始同步,其数据完整性无法保证,正确的做法是在数据同步的过程中应该记录位点并持久化,重新启动后按照继续从上一次的位置继续同步,实现真正的增量同步。
一,题记 所有的业务系统,都有生成ID的需求,如订单id,商品id,文章ID等。这个ID会是数据库中的唯一主键,在它上面会建立聚集索引! ID生成的核心需求有两点: 全局唯一 趋势有序 二,为什么要全局唯一? 著名的例子就是身份证号码,身份证号码确实是对人唯一的,然而一个人是可以办理多个身份证的,例如你身份证丢了,又重新补办了一张,号码不变。 问题来了,因为系统是按照身份证号码做唯一主键的。此时,如果身份证是被盗的情况下,你是没有办法在系统里面注销的,因为新旧2个身份证的“主键”都是身份证号码。 也就是说,
消息队列在大数据技术生态当中,一直都是值得重视的存在,开源的消息队列产品,市面上也不少,基于不同的场景,需要去匹配不同的解决方案。围绕消息队列,今天的大数据开发学习分享,我们主要来聊聊,消息队列如何确保消息不丢失。
savior 表有两个字段,id 是主键,设置了自动递增;status 表示状态,它只有 0/1 两种状态。
但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,永不迁移数据和避免热点的文章中要求需要唯一ID的特性:
分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表。因为数据量巨大一张表无法承接,就会对其进行分库分表。小伙伴们可以去看一下
提示:公众号展示代码会自动折行,建议横屏阅读 「第一部分 GTID简介」 在MySQL5.6引入了GTID(Global Transaction Identifier)特性,它可以在集群中唯一标识一个事务,在MySQL主从复制时,从节点可以使用GTID来确定复制位点,用于取代使用binlog文件偏移量的传统方式,在发生主备切换时从节点可以自动在新主上找到正确的复制位置,大大简化了复杂复制拓扑下集群的维护,也减少了人为设置复制位点发生误操作的风险,另外,基于GTID的复制可以跳过已经执行过的事务,减少了数据发
流水号是每个系统永远都绕不开的一个话题,如订单系统中的订单号,物流系统的运单号、银行系统的业务单号等等,不难发现这些单号虽然叫法不一样,但都有着一些相同的共性,那就是全局唯一性。除此之外,一个设计良好的流水号生成规则还应该包含如下特性:
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据库的分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。
为什么需要分布式全局唯一ID以及分布式ID的业务需求?集群高并发情况下如何保证分布式唯一全局Id生成?
因此主流MQ其实都提供了可靠性投递机制,确保即使网络异常,消息也能可靠传递,而不会丢失。
主要思路是基于redis的INCR命令,redis的”INCR AND GET”是原子操作,同时Redis是单进程单线程架构,这样就不会因为多个取号方的INCR命令导致取号重复,因此,基于Redis的INCR命令实现序列号的生成基本能满足全局唯一与单调递增的序列号,但是这样生成的序列号只保证了递增这一特性。考虑到项目需求是需要生成特定规则的序列号,所以只依靠redis的INCR命令是实现不了的,最终我选择的是Hash提供的HINCRBY命令来实现。
在MySQL数据库中,主键自增是一种常见的技术,用于自动为表中的主键字段生成唯一的递增值。本文将深入讨论MySQL主键自增的原理、用途、使用方法,以及在实践中的注意事项和最佳实践。
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。
在互联网的业务系统中,涉及到各种各样的ID,如在支付系统中就会有支付ID、退款ID等。那一般生成ID都有哪些解决方案呢?特别是在复杂的分布式系统业务场景中,我们应该采用哪种适合自己的解决方案是十分重要的。下面我们一一来列举一下,不一定全部适合,这些解决方案仅供你参考,或许对你有用。 一个ID一般来说有下面几种要素: 唯一性:确保生成的ID是全网唯一的。 有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的。 高可用性:确保任何时候都能正确的生成ID。 带时间:ID里面包含时间,一眼扫
对于单体系统来说,主键ID可能会常用主键自动的方式进行设置,这种ID生成方法在单体项目是可行的,但是对于分布式系统,分库分表之后,就不适应了,比如订单表数据量太大了,分成了多个库,如果还采用数据库主键自增的方式,就会出现在不同库id一致的情况,虽然是不符合业务的
本文只整理MySQL的自增字段方案,Oracle和SQL Server的自增长方案就不介绍了。
分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表。因为数据量巨大一张表无法承接,就会对其进行分库分表。小伙伴们可以去看一下《分库分表?如何做到永不迁移数据和避免热点?》
在分布式系统中,往往需要对大量的数据如订单、账户进行标识,以一个有意义的有序的序列号来作为全局唯一的ID。
1、新增数据要求生成的编码格式为YYYYMMA00001。例如:202209A00001 2、序号 00001递增,当序号大于99999时,字母A递增。例如:A99999 时递增为B00001
如果数据库是跨机房部署,分布式ID是必须的,不然后续做数据分析和统计、跨机房路由会踩大坑。
由于这次银联给的时间非常少,我们这边改动涉及到相关上游一起改造,所以我们已经开始设计,马上投入代码改造中。
全局唯一 ID 几乎是所有设计系统时都会遇到的,全局唯一 ID 在存储和检索中有至关重要的作用。
因为 InnoDB 在存储数据的时候,更加安全,所以默认的存储引擎是InnoDB(虽然 MyISAM 比 InnoDB 快)
我们作为一个软件系统,肯定到处充满着各种单据,也必然需要有各种单据号与之对应。比如:电商行业的订单号、支付流水号、退款单号等等。SCM的采购单号、进货单号、出货单号、盘点单号等。在一个企业内部或者一个2C的平台,无法避免的需要通过某个单据号来进行沟通。所以一个好的单据号必然是便于沟通的,简单来说优先级就是 好记 > 好输入 > 好看,当然也是越短越好。
Disruptor是一个开源框架,研发的初衷是为了解决高并发下队列锁的问题,最早由LMAX提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单
分布式架构下,唯一序列号生成是我们在设计一个系统,尤其是数据库使用分库分表的时候常常会遇见的问题。当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。
作者简介 丁宜人,10年java开发经验。携程技术中心基础业务研发部用户中心资深java工程师,负责携程账号的基础服务和相关框架组件研发。之前在惠普公司供职6年,负责消息中间件产品研发。 一、相关背景 分布式架构下,唯一序列号生成是我们在设计一个系统,尤其是数据库使用分库分表的时候常常会遇见的问题。当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。 在携程账号数据库迁移MySql过程中,我们对用户ID的生成方案进行了新的设计,要求能够支撑携程现有的新用户注册体量。 本文通过
前段时间接触到腾讯云的一个新数据库产品 CynosDB 是基于 Amazon Aurora 数据库的Paper实现的。我比较感兴趣就来看看它和之前看过的 Spanner 之类有什么不同,也许部分设计也能用在我们游戏业务的服务器中。它的主要的创新点在于重新设计了binlog和存储的部分,所以我也主要就看了两篇Paper: 《Amazon Aurora - Design Considerations for High Throughput Cloud-Native Relational Databases》 是一个整体性质的介绍和概述; 《Amazon Aurora: On Avoiding Distributed Consensus for I/Os,Commits, and Membership Changes》 是对其重点部分的存储服务的。
1000万行数据,由10万个用户+每用户100条记录组成,同样使用书中所提及的构造序列的表值函数轻松构造完成。
可以看到使用rank()函数的时候相同的点赞数会返回相同的排名,排名会产生跳跃,最终的排名不是连续的
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
业务ID是我们理解、管理和操作业务实体的关键。通过业务ID,我们可以查询、更新和删除业务实体,也可以跟踪业务实体的状态和历史。
| 作者:陈俊熹,腾讯云数据库研发工程师,主要负责腾讯云MySQL数据库研发工作。 ---- 导语:之前的文章(见本文末)已经介绍了 InnoDB 的部分内外存数据结构,我也在学习过程中对 InnoDB 的一些数据对象有了基本认识,后面的文章会从数据流出发来学习 InnoDB。这篇文章主要学习 InnoDB Redo Log 的流程。Redo Log 是 InnoDB 实现数据一致性和持久化存储的关键,本文主要从设计原理和部分源码实现出发,对其中的知识点进行归纳总结。 1 Redo Log Buffer
原文在简书上发表,再同步到Excel催化剂微信公众号或其他平台上,文章后续有修改和更新将在简书上操作, 其他平台不作同步修改更新,因此建议阅读其他出处的文章时,尽可能跳转回简书平台上查看。
结合实例分析了自增值保存在哪里,自增值的修改策略,以及自增值不连续的四个场景,希望对各位小伙伴们有所帮助~
业务量小于500W或数据容量小于2G的时候单独一个mysql即可提供服务,再大点的时候就进行读写分离也可以应付过来。但当主从同步也扛不住的时候就需要分表分库了,但分库分表后需要有一个唯一ID来标识一条数据,且这个唯一ID还必须有规则,能辅助我们解决分库分表的一些问题。
MySQL 在 8.0 的版本推出了窗口函数,我们可以很方便地使用 row_number() 函数生成序号。
表命名的规则分为3个层级,层级之间通过_分割,例如b_r_identity、d_l_identity。规约为:
英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/
本篇文章首发公众号:AI悦创:https://mp.weixin.qq.com/s/jhSiOimrNpbhIUpNyoR6TQ ,博客原文:https://www.aiyc.top/1913.html
依据数据库的第二范式,数据库中每一个表中都需要有一个唯一的主键,其他数据元素和主键一一对应。
在对某个表执行SELECT、INSERT、DELETE、UPDATE语句时,InnoDB存储引擎是不会为这个表添加表级 别的 S锁 或者 X锁 的。在对某个表执行一些诸如 ALTER TABLE 、 DROP TABLE 这类的 DDL 语句时,其 他事务对这个表并发执行诸如SELECT、INSERT、DELETE、UPDATE的语句会发生阻塞。同理,某个事务 中对某个表执行SELECT、INSERT、DELETE、UPDATE语句时,在其他会话中对这个表执行 DDL 语句也会 发生阻塞。这个过程其实是通过在 server层 使用一种称之为 元数据锁 (英文名: Metadata Locks , 简称 MDL )结构来实现的。
领取专属 10元无门槛券
手把手带您无忧上云