MySQL-大批量数据如何快速的数据迁移 背景:最近接触到一个诊所的项目,主要做二次开发,由于甲方没法提供测试数据库(只有生产环境),且二次开发还是基于之前的数据库结构,给了数据库文档和生产库数据地址。由于生产库数据量比较大,我们也没法直接在生产库下二次开发(胆小),我们打算从生产库环境下迁移需要用到表导入自己的开发环境下,迁移的是表结构和表中数据,大概一个表在400M左右(300万条数据),全是InnoDB的存储引擎,而且都带有索引结构。针对如上的迁移数据的需求,我们尝试过直接通过从生产库下导出SQL文件
声明:本文仅代表原作者观点,仅用于SAP软件的应用与学习,不代表SAP公司。注:文中所示截图来源SAP软件,相应著作权归SAP所有。
数据迁移的目的是为了给数据找一个更合适的归宿,让其满足当前及未来某段时间内业务场景的使用需求,使数据更安全,更可靠,更有效的为客户服务。
多年来,SAP系统积累了大量数据:临时数据、低价值数据、很少需要的数据,以及仅因法律原因需要保留的数据。随着业务的增加和社会新技术要求的更新换代,企业信息系统也需要不断的更新升级。企业信息系统迁移的过程最重要的是数据迁移,那么数据迁移要注意什么?
在生产环境中,做数据迁移需要考虑很多的可能性和场景,尽量排除可能发生的问题。我自己总结了下,大体有如下需要注意的地方。 1)充分的测试,评估时间,总结经验,提升性能 在生产中进行数据的大批量迁移时,充分的测试时必须的。一方面可以根据这些测试积累一些必要的数据作为生产中使用参考,另外一方面可以基于之前的测试,总结经验,总结不足之处,加入改进,在生产中每一分钟的改进都是很重要的。 2)完整的备份策略 热备甚至冷备 在数据迁移之前进行完整的备份,一定要是全量的。甚至在允许的情况下做冷备都可以。数据的备份
先在源端 MySQL 用如下脚本创建测试表,以及写入10000条数据用于迁移测试。
茄子科技(海外 SHAREit Group)是一家全球化互联网科技公司,主要从事移动互联网软件研发与全球移动广告变现解决方案、跨境支付解决方案等互联网服务等业务。茄子快传(SHAREit)是茄子科技旗下的代表产品, 是一款一站式数字娱乐内容与跨平台资源分享平台,累计安装用户数近 24 亿。茄子科技作为一家出海企业,已经在东南亚、南亚、中东以及非洲等地区,打造了多款工具和内容的应用,并且在 Google Play 的下载榜上常年名列前茅。
这几年一直是MONGODB使用者,从3.2 到4.0 ,在使用中也一直充分的感受到MONGODB 这几年的飞速的发展以及功能的扩展,偶然在极客时间里面看到有MONGODB 的 终极玩家 唐建法 老师的关于MONGODB的课,其中有一段内容以前是不大敢想的, 就是ORACLE TO MONGODB。
by 光城
Insert into select请慎用。这天xxx接到一个需求,需要将表A的数据迁移到表B中去做一个备份。本想通过程序先查询查出来然后批量插入。但xxx觉得这样有点慢,需要耗费大量的网络I/O,决定采取别的方法进行实现。通过在Baidu的海洋里遨游,他发现了可以使用insert into select实现,这样就可以避免使用网络I/O,直接使用SQL依靠数据库I/O完成,这样简直不要太棒了。然后他就被开除了。
oplog 在云数据库MongoDB 中作用非常重要。当Primary进行写操作的时候,会将这些写操作记录写入Primary的Oplog 中,而后Secondary会将Oplog 复制到本机并应用这些操作,从而实现Replication的功能。而回档是基于全量备份的镜像 +oplog 进行的,回档的时间取决于回放 oplog 的量,而oplog的大小是有限制的,如果容量太小,会导致oplog被冲而无法恢复指定时间点的数据,也有可能导致宕机的节点就很容易出现无法同步数据的现象。
Insert into select 请慎用,同事因为使用了 Insert into select 语句引发了重大生产事故,最后被开除。
SAP ERP ECC作为一种时代化的管理工具,是企业数字化必不可少的重要组成部分。但随着市场的不断更新变化,将ERP升级到SAP S/4HANA, 并同时迁移到云端,以更为低廉的IT成本,享受数据更好的安全性、伸缩性和可延展性,是很多企业当下都在考虑的业务布局。
几年前我曾经服务过的一家电商公司,随着业务增长我们每天的订单量很快从30万单增长到了100万单,订单总量也突破了一亿。当时用的Mysql数据库。根据监控,我们的每秒最高订单量已经达到了2000笔(不包括秒杀,秒杀TPS已经上万了。秒杀我们有一套专门的解决方案,详见《秒杀系统设计~亿级用户》)。不过,直到此时,订单系统还是单库单表,幸好当时数据库服务器配置不错,我们的系统才能撑住这么大的压力。
对遗留系统的微服务化改造,从整体上来说,整个过程包含两个部分:一,通过某一种方法论将系统进行微服务划分,比如DDD倡导的限界上下文划分方法。根据系统的特点和运行状态,又分为具体的两种实施策略,绞杀者模式和修缮模式。二,数据库的拆分,只有在数据层面也拆分开,才能真正达到服务化的目的。具体也可以分为,与业务服务拆分同时进行,或者等业务服务拆分后再单独进行两种策略。
关于架构,大家都有了解和理解。通常一个业务或项目,在做架构设计时,可能会包含业务架构和技术架构。其中技术架构是我们作为开发角色,在做设计时重点的工作内容。但还有架构类型的划分方式,会包括业务架构、技术架构、数据架构和应用架构四种。
见过从mysql,influxdb迁移至Easticsearch中的,没见过从Easticsearch迁移至influxdb中,迁移的数据是一些实时性的流量数据,influxdb时序性数据库对这类数据的支撑比较客观。
在工业 4.0 的浪潮下,智能和数据与物理世界结合越加紧密,多元化、灵活、高效的数据处理能力成为各行各业的热点需求。虽然对象存储 COS 已经预置电商、文创、教育、社交、安防等行业需要的基础数据处理能力,但在特殊流程和定制化需求方面公有云依然难以做到全方位满足客户需求。 01. 数据工作流全新能力出炉: 支持自定义云函数 COS 数据工作流是一套完整的端到云到端的数据存储、处理、发布等「一站式」云上智能解决方案。 COS 数据工作流最新增加了自定义函数的处理能力,开发者可添加 Serverless 云函数
“当用户使用软件时,会需要面对的两个鸿沟:一个是执行的鸿沟,在这里,用户要弄清楚如何操作,与软件「对话」;另一个是评估的鸿沟,用户要弄清楚操作的结果。” PingCAP 联合创始人兼 CTO 黄东旭在《做出让人爱不释手的基础软件》中提到,“ 我们作为设计师的使命就是帮助用户消除可观测性和可交互性这两个鸿沟。”
说起数据迁移,感觉也算是有些感受了,但是最近参与的几个迁移案例还是和以前大大不同,以前的迁移项目是比拼停机维护时间,尽可能在短时间诶导入大批量的 数据,有参与表空间传输的场景,还有跨平台的数据迁移,数据库迁移式升级等等,相对难度大一些的算是增量数据的迁移场景。为此也算把 sqlldr,datapump和exp/imp玩了一圈,最后写了一个小的工具使用外部表迁移,也算是有了一些谈资。 最近的迁移项目还是有些特殊,有schema级别的迁移,这种情况数据库版本的影响就没有那么大了,基本就是schema级别
在星爷的《大话西游》中有一句非常出名的台词:“曾经有一份真挚的感情摆在我的面前我没有珍惜,等我失去的时候才追悔莫及,人间最痛苦的事莫过于此,如果上天能给我一次再来一次的机会,我会对哪个女孩说三个字:我爱你,如果非要在这份爱上加一个期限,我希望是一万年!”在我们开发人员的眼中,这个感情就和我们数据库中的数据一样,我们多希望他一万年都不改变,但是往往事与愿违,随着公司的不断发展,业务的不断变更,我们对数据的要求也在不断的变化,大概有下面的几种情况:
昨天面试了一个MYSQL的DBA, 在面试的过程中有一个项目经营,某银行的MYSQL数据到MONGODB 的数据迁移. 我比较好奇,多问了两句
所有的数据库对象名称必须使用小写字母并用下划线分割(MySQL大小写敏感,名称要见名知意,最好不超过32字符) 所有的数据库对象名称禁止使用MySQL保留关键字(如 desc、range、match、delayed 等,请参考 MySQL官方保留字 【https://dev.mysql.com/doc/refman/5.7/en/keywords.html】 ) 临时库表必须以tmp为前缀并以日期为后缀(tmp_) 备份库和库必须以bak为前缀并以日期为后缀(bak_) 所有存储相同数据的
下方视频为邵宗文在未来大会演讲实录。每个行业对数据库有不一样的要求,云上数据库通过智能化运维,数据会越来越多,准确度也越来越高,模型也会越来越精准。腾讯云上数据库如何满足用户多样化的诉求?一起来听听吧。
云计算发展到今天,各大云厂商都很成熟了。它们各有各的优势,作为甲方客户来讲,特别是互联网客户,选择上云确实是值得投入的操作。我们在选择上云,前期因为技术、成本、产品等原因选择上了一家云厂商,但是后面会因为服务、价格等其他因素而考虑选择考虑其他云。其实这都不要紧,毕竟事物都在不断的发展中,每个阶段都有自己合适的操作。
本系列文章就是向大家介绍, 从 SQL Server 迁移到 MySQL 所面临的问题和我们的解决方案。
社会数字化、智能化的发展进程中,海量的数据带来巨大挑战,各行各业都在加速数字化转型,越来越多的企业意识到数据基础设施是成功的关键。然而,作为数据基础设施的核心,传统数据库例如 MySQL 面临性能和容量瓶颈,通过中间件实现的分库分表方案复杂度高,同时带来高昂的运维成本。
在 PingCAP 用户峰会 2023 上,PingCAP 研发副总裁唐刘、PingCAP 首席科学家丁岩,共同带来了“携手中国用户,打造世界级产品”主题分享。分别从 TiDB 7.x 版本内核的演进方向、面向中国企业级用户的新品平凯数据库的发版策略和产品路线图两个角度,解析 TiDB 产品家族协同演进路径。以下为分享实录 。
随着业务数据量的剧增,传统MySQL在数据存储上变得越来越吃力,NoSQL因其良好的性能、扩展性、稳定性逐渐成为业务选型的首要考虑。TcaplusDB是腾讯云推出的一款全托管NoSQL数据库服务,旨在为客户提供极致的数据据存储体验,详细信息请参考官方文档。本文主要介绍如何将MySQL数据迁移到TcaplusDB。
Insert into select请慎用。这天xxx接到一个需求,需要将表A的数据迁移到表B中去做一个备份。本想通过程序先查询查出来然后批量插入。但xxx觉得这样有点慢,需要耗费大量的网络I/O,决定采取别的方法进行实现。通过在Baidu的海洋里遨游,她发现了可以使用insert into select实现,这样就可以避免使用网络I/O,直接使用SQL依靠数据库I/O完成,这样简直不要太棒了。然后她就被开除了。
传统企业在建设数据库初期,不仅建设服务器,还要保证数据库能够稳定和可靠的运行。当业务数据增长到一定大小的时候,就需要增加服务器CPU及内存以及磁盘相关资源。为了保证服务器的稳定性,还需要制定相关制度及体系,定制数据库的架构,防止数据库被攻击,确保数据库安全稳定。搜索关注“腾讯云数据库”官方微信立得10元腾讯云无门槛代金券,体验移动端一键管理数据库,学习更多数据库技术实战教程。
企业大量的IT投资建立了众多的信息系统,但是随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。企业急需通过建立底层数据集成平台来联系横贯整个企业的异构系统、应用、数据源等,完成在企业内部的ERP、CRM、SCM、数据库、数据仓库,以及其它重要的内部系统之间无缝的共享和交换数据。
传统企业在建设数据库初期,不仅建设服务器,还要保证数据库能够稳定和可靠的运行。当业务数据增长到一定大小的时候,就需要增加服务器CPU及内存以及磁盘相关资源。为了保证服务器的稳定性,还需要制定相关制度及体系,定制数据库的架构,防止数据库被攻击,确保数据库安全稳定。
数据库选型一直是困扰客户的难题,不仅要考虑底层的数据库技术,还需要结合企业业务特点、企业未来规划做决策。如何快速掌握数据库选型秘诀呢?答案无疑是看市场怎么做,看市场的同行是如何选择的。 近期,腾讯云数据库TDSQL助力福建海峡银行新一代核心业务系统正式上线(点击查看详情),为城商行提供核心改造解决方案。新核心关键业务系统采用“微服务+分布式”架构,改造历时14个月,依托腾讯云企业级分布式数据库TDSQL良好的兼容性、成熟的迁移能力和技术服务支持,海峡银行快速完成了核心系统的国产数据库替换,并基于腾讯云数据库
上一讲,我写了一篇关于批量导入请求的性能优化过程,其中,关于Elasticsearch源码中写死了最大连接数的问题,是我错了,有同学留言说是HttpClientConfigCallback中可以修改,后来经过证实,确实可以修改,大家注意一下,同时,也非常感谢这位同学的留言。
点击上方蓝字每天学习数据库 现在经常会有各式各样的“删库到跑路”事件发生。不管是传统数据库还是云数据库,总会遇到一些问题,与数据迁移、数据风险安全、数据订阅等相关。今天,我们来谈谈云数据库的优势和腾讯云在这方面的努力。看看腾讯云怎么通过技术手段来确保数据库安全稳定,和快捷迁移,以及推动数据商业分析的。 传统数据库与云数据库 传统数据库 传统企业在建设数据库初期,不仅建设服务器,还要保证数据库能够稳定和可靠的运行。当业务数据增长到一定大小的时候,就需要增加服务器CPU及内存以及磁盘相关资源。为了保证服务器
面试官:如何来设计动态扩容的分库分表方案? 面试官心理剖析: 这个问题主要是看看你们公司设计的分库分表设计方案怎么样的?你知不知道动态扩容的方案?
本文介绍了某超大型保险公司于 2023 年 11 月成功投产的全新核心保单系统,这是保险业首次采用全栈自主技术的核心业务系统。通过系统升级,该公司实现了从集中式到分布式架构的转变,借助国产 X86 服务器和 TiDB 分布式数据库显著提升了性能,为未来业务增长奠定了坚实基础。这一创新不仅在逻辑大集中的核心系统领域确立了新的标杆,同时也为金融行业关键系统的国产化建设提供了宝贵经验。
开始和数据库玩耍以后,我们将一直与SQL和数据打交道。在日常的操作中,我们只需要对指定的数据库进行操作,执行增删改查,权限管理等。但有些时候由于项目的升级,或者服务器的更换,我们要将数据从一个地方转移到另一个地方,准确的说是从一个数据库服务转移到另一个数据库服务中,因为我们还要继续使用这些数据。
2022年,搜狐智能媒体完成了迁移腾讯云的弹性计算项目,其中大数据业务整体都迁移了腾讯云,上云之后的整体服务性能、成本控制、运维效率等方面都取得了不错的效果,达到了预期的降本增效目标。
最近遇到一个关于MySQL单表过大的问题,该表存放的主要是日志文件,且其中有一个字段存放的数据过大,导致占用空间过大以及查询效率的降低,这种设计其实是不合理的。目前该表占用1.2T容量,数据量超过3亿条,而这个RDS数据库的容量总共就2T,且由于种种原因无法扩容,迫不得已急需给出解决方案。
今天我就给大家讲一下我们这边做的数据库运维的自动化平台,他是怎么样子的。首先我会给大家简单介绍一下我们做平台的背景,以及平台的一些技术架构,以及针对我们DBA和开发的需求的全套解决方案。 首先是背景,我们为什么要做RDS,在做RDS之前其实我们也有一套自己的自动化系统,可是我们有了这套自动化系统我们发现有了之后我们DBA还是很忙,每天忙于工单处理,大表DDL,集群搭建,扩容,数据迁移等等。这些东西不能说没有价值,但是对于DBA来说,每一次的重复操作,都会让这个价值指数级下降,并且不能带来成长。所以我们对这些
在上一篇中我们介绍了数据迁移的套路,但是没有介绍具体的方案,这篇着重介绍下具体的数据迁移方案
领取专属 10元无门槛券
手把手带您无忧上云