import kerasfrom keras.models import Modelfrom keras.layers import Input, concatenate, Conv2D, MaxPooling2D...(prevlayer):return MaxPooling2D(pool_size=(2,2))(prevlayer)def concatenate_fn(f,kernal,stride,padding...(conv1)conv2 = create_conv_layer(64,(3,3),'relu','same',pool1,0.2)pool2 = maxpooling_fn(conv2)conv3 =...(256,(3,3),'relu','same',pool3,0.3)pool4 = maxpooling_fn(conv4)conv5 = create_conv_layer(512,(3,3),'relu...','same',pool4,0.3)pool5 = maxpooling_fn(conv5)up6 = concatenate_fn(256,(2,2),(2,2),'same',conv5,conv4