首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    解决ValueError: Expected 2D array, got 1D array instead: Reshape your data either

    解决ValueError: Expected 2D array, got 1D array instead: Reshape your data either using array.reshape(-...其中一个常见的错误是"ValueError: Expected 2D array, got 1D array instead",意味着算法期望的是一个二维数组,但是实际传入的却是一个一维数组。...结论与总结在机器学习算法中,如果遇到"ValueError: Expected 2D array, got 1D array instead"错误,说明算法期望的输入是一个二维数组,但实际传入的是一个一维数组...(area_2d, price_2d)# 预测新数据new_area = np.array([80, 100, 110]) # 新的房屋面积,一维数组new_area_2d = new_area.reshape...希望通过这个示例代码,你可以更好地理解如何使用​​reshape()​​函数解决"ValueError: Expected 2D array, got 1D array instead"错误,并且在实际应用中能够灵活运用

    91350

    pytorch lstm时间序列预测问题踩坑「建议收藏」

    ,否则会警告,不会报错 增加维度方法: 3.准确率 3.结果 1.做时间序列问题 2.问题 1.数据集自己做,为多个输入对应多个或一个输出 2.损失函数 注意:不能用交叉熵 nn.CrossEntropyLoss...目标值即真实值是标签,是torch.int64类型数据,即整数,不允许小数,如果输入小数会强行取整, 应该用 nn.MSELoss() 我在这个问题上纠结了很久,总是显示 RuntimeError: expected...scalar type Long but found Float 导致我找了很久怎么样才能把torch.float64保留小数的情况下转成long,后来查资料torch.long就是torch.int64...,简直变态 后来一点一点往上找才知道的这个错误 注意2:真实值(目标值)必须是两个维度,否则会警告,不会报错 增加维度方法: 1.torch.unsqueeze(tensor, dim) 2.numpy_array...= .numpy_array [np.newaxis, :, :] # 原来维度(10, 13)——(1, 10, 13) 补充 np.unaqueeze总是报错,不明白为什么 3.准确率 分类问题是有准确率这个评价的

    91910
    领券