首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CNN 在语音识别中的应用

本文介绍了语音识别技术中的端到端模型、基于CTC的序列模型、基于序列学习的注意力机制模型、基于3D卷积神经网络的语音识别系统等。其中,端到端模型可以直接从原始音频数据中学习到针对语音识别的抽象表示,具有较好的可扩展性和鲁棒性;而基于CTC的序列模型则通过连接主义学习的方法,将CTC定义的序列映射问题转化为神经网络中的参数优化问题,进一步提高了语音识别的准确率;基于序列学习的注意力机制模型则借鉴了语言学中的注意力机制,通过对输入序列进行加权处理,进一步提高了模型的识别准确率;基于3D卷积神经网络的语音识别系统则利用3D卷积核对输入序列进行卷积处理,提取出序列中的特征信息,进一步提高了模型的识别准确率。

03
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Mach. Intell. | 使用指数激活函数改进卷积网络中基因组序列模体的表示

    今天为大家介绍的是来自Peter K. Koo的一篇关于基因组表示的论文。深度卷积神经网络(CNN)在对调控基因组序列进行训练时,往往以分布式方式构建表示,这使得提取具有生物学意义的学习特征(如序列模体)成为一项挑战。在这里,作者对合成序列进行了全面分析,以研究CNN激活对模型可解释性的影响。作者表明,在第一层过滤器中使用指数激活与其他常用激活相比,始终导致可解释且鲁棒的模体表示。令人惊讶的是,作者证明了具有更好测试性能的CNN并不一定意味着用属性方法提取出更可解释的表示。具有指数激活的CNN显着提高了用属性方法恢复具有生物学意义的表示的效果。

    02

    引用次数最多的七篇深度学习论文出自谁手?Hinton、Yoshua榜上有名(理解/泛化/迁移篇)

    编者按:我们通常都会学习前辈或大牛的经典作品,而引用次数自然也成为了论文的一个重要标杆。在 GitHub 上,大神 @Terryum 整理了一份精心编写的论文推荐列表,其中包含了在深度学习领域中引用次数最多的前100篇论文(自2012年起)。囿于篇幅限制,AI 研习社整理编译了理解/泛化/迁移领域的七篇论文,并增加了论文的概要,方便读者快速了解。 有一些深度学习论文,无论它们属于哪个应用领域,都值得仔细研习。文章在精不在多,AI 研习社提供的这些文章,都被认为是值得一读的优秀论文。 █ 背景 除此列表之

    08

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券