自七十年代以来,人脸识别已经成为了计算机视觉和生物识别领域被研究最多的主题之一。基于人工设计的特征和传统机器学习技术的传统方法近来已被使用非常大型的数据集训练的深度神经网络取代。在这篇论文中,我们对流行的人脸识别方法进行了全面且最新的文献总结,其中既包括传统方法(基于几何的方法、整体方法、基于特征的方法和混合方法),也有深度学习方法。
编者注:本文根据山世光在 CNCC 2016 可视媒体计算论坛上所做的报告《深度化的人脸检测与识别技术:进展与问题》编辑整理而来,在未改变原意的基础上略有删减。 山世光,中科院计算所研究员,中科院智能信息处理重点实验室常务副主任。主要从事计算机视觉、模式识别、机器学习等相关研究工作。迄今已发表CCF A类论文50余篇,全部论文被Google Scholar引用9000余次。曾应邀担任过ICCV,ACCV,ICPR,FG等多个国际会议的领域主席(Area Chair)。现任IEEE Trans. on Ima
无约束人脸识别是计算机视觉领域中最难的问题之一。人脸识别在罪犯识别、考勤系统、人脸解锁系统中得到了大量应用,因此已经成为人们日常生活的一部分。这些识别工具的简洁性是其在工业和行政方面得到广泛应用的主要原因之一。但是同时,这种易用性掩盖了工具设计背后的复杂度和难度。很多科学家和研究人员仍然在研究多种技术以获得准确、稳健的人脸识别机制,未来其应用范围仍然会以指数级增加。2012 年,Krizhevsky 等人 [1] 提出 AlexNet,这一变革性研究是人脸识别领域的一项重大突破,AlexNet 赢得了 ImageNet 挑战赛 2012 的冠军。之后,基于 CNN 的方法在大部分计算机视觉问题中如鱼得水,如图像识别、目标检测、语义分割和生物医疗图像分析等。过去几年研究者提出了多种基于 CNN 的方法,其中大部分方法处理问题所需的复杂度和非线性,从而得到更一般的特征,然后在 LFW [12]、Megaface [13] 等主要人脸数据集上达到当前最优准确率。2012 年之后,出现了很多基于深度学习的人脸识别框架,如 DeepFace [14]、DeepID [15]、FaceNet [16] 等,轻松超越了手工方法的性能。
【新智元导读】本论文对人脸识别和验证任务提出一种新的损失函数,即中心损失。中心损失和softmax损失联合监督学习的CNN,其对深层学习特征的人脸识别能力大大提高。对几个大型人脸基准的实验已经令人信服地证明了该方法的有效性。 相关论文 题目:A Discriminative Feature Learning Approachfor Deep Face Recognition 作者:Yandong Wen, Kaipeng Zhang, Zhifeng Li*, YuQiao 新智元微信公众号回复1015,
面部是人体的独特标识,每个人都有着独特的面部特征。通过一个人的面部可以识别出其身份,不过双胞胎可能有点困难。那么什么是面部识别系统?简单来说,面部识别系统是一种通过人的面部轮廓比较和分析来从数字图像或视频源中识别人的身份的技术。人脸识别已经成为深度学习的重要方向。
人脸识别技术已经成为现代技术的重要组成部分,被广泛应用于安全监控、身份验证、智能门禁等领域。
---- 新智元报道 编辑:Joey 【新智元导读】近日,谷歌的一名软件工程师研发了一项AI人脸识别技术,可识别二战大屠杀时期的老照片中的人脸,以后找寻失散多年的亲人要成为现实了? AI面部识别领域又开辟新业务了? 这次,是鉴别二战时期老照片里的人脸图像。 近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。 用AI寻找失散多年的亲人 2016
最近看了很多人脸识别loss相关和GAN相关的paper,但是没有提纲挈领的把这些串起来。于是,一个小姐姐分享给我了这篇论文,阅读了一下,确实比较经典,很全面。在这里,将论文内容结合我自己的理解和在工作中进行的探索展开,分享给大家。
选自arXiv 机器之心编译 机器之心编辑部 人脸识别是机器学习社区研究最多的课题之一,以 3D 人脸识别为代表的相关 ML 技术十年来都有哪些进展?这篇文章给出了答案。 近年来,人脸识别的研究已经转向使用 3D 人脸表面,因为 3D 几何信息可以表征更多的鉴别特征。近日,澳大利亚迪肯大学的三位研究者回顾了过去十年发展起来的 3D 人脸识别技术,总体上分为常规方法和深度学习方法。 从左至右依次是迪肯大学信息技术学院博士生 Yaping Jing、讲师(助理教授) Xuequan Lu 和高级讲师 Sh
首先简单介绍一下人脸验证(face verification)和人脸识别(face recognition)的区别。
编辑:闻菲 【新智元导读】日前,腾讯AI Lab在国际最大、最难的人脸检测平台WIDER FACE与热门人脸识别平台MegaFace多项评测指标获得第一,刷新了行业纪录。研究人员表示,通过有针对的优化,这些模型都可以投入实用,并且与竞赛中表现出的性能基本齐平。 人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,是人脸识别的前提和基础。由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直极具挑战。优秀的人脸技术在政务、金融、安防等领域都具有极高应用价值。 日
最近,一群工程师基于 tensorflow.js core 框架,开发出一款可以在浏览器上运行的人脸识别 API——face-api.js,不仅能同时还可以识别多张人脸,让更多非专业 AI 工程师,能够低成本使用人脸识别技术。
本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
机器之心报道 参与:吴欣 据机器之心消息,腾讯 AI Lab 在大型人脸检测平台 WIDER FACE 与人脸识别平台 MegaFace 的多项评测指标中荣膺榜首,刷新行业纪录。此外,腾讯 AI Lab 已通过 arXiv 平台发表论文公开部分技术细节。 人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,人脸识别是基于人脸图像自动辨识其身份,两者密切相关,前者是后者的前提和基础。在研究上,由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直是
选自arXiv 机器之心编译 参与:Panda 深度卷积神经网络 (CNN) 已经推动人脸识别实现了革命性的进展。人脸识别的核心任务包括人脸验证和人脸辨识。然而,在传统意义上的深度卷积神经网络的 softmax 代价函数的监督下,所学习的模型通常缺乏足够的判别性。为了解决这一问题,近期一系列损失函数被提出来,如 Center Loss、L-Softmax、A-Softmax。所有这些改进算法都基于一个核心思想: 增强类间差异并且减小类内差异。腾讯 AI Lab 的一篇 CVPR 2018 论文从一个新的角度
在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等等的不同,同一个人的面孔照片在照片象素层面上差别很大,凭借专家们的经验与试错难以取出准确率较高的特征值,自然也没法对这些特征值进一步分类。深度学习的最大优势在于由训练算法自行调整参数权重,构造出一个准确率较高的f(x)函数,给定一张照片则可以获取到特征值,进而再归类。本文中笔者试图用通俗的语言探讨人脸识别技术,首先
人脸识别技术作为一种生物识别技术,在过去几十年中经历了显著的发展。其发展可以分为几个主要阶段,每个阶段都对应着特定的技术进步和应用模式的变化。
据路透社、CNN等多家媒体报道,在本周二的一次投票中,旧金山城市监督委员会(Board of Supervisors) 的官员们以8票对1票的结果通过一项法令,禁止政府机构购买和使用人脸识别技术。此举旨在加强新技术的监管,并消除个人隐私泄露的隐患。
上一期“计算机视觉战队”已经和大家分享了相关的人脸检测、识别和验证背景及现状的发展状况,今天我们继续说说人脸领域的一些相关技术以及新框架的人脸检测识别系统。
人脸识别所面临的一个挑战就是你需要解决一次学习问题,这意味着在大多数人脸识别应用中,你需要通过单单一张图片或者单单一个人脸样例就能去识别这个人。
https://mp.weixin.qq.com/s/RA8S6uzzJ_moxq8T5thqwA
每周精选 Algorithm System Anti-Spoofing 之人脸活体检测 在小编之前的文章系列中曾介绍过的对抗样本攻击,是目前Deep Learning比较火热的一个研究方向,因为它掀起了关注深度学习在安全领域潜在问题的热潮。虽然活跃于学术界的对抗样本目前还未渗入到工业界中,anti-spoofing(反欺诈)仍一直是大家关注的焦点。人脸识别是大家最为熟悉的应用深度学习的例子,结合人脸识别技术的APP在市面上比比皆是,本文将简单介绍在人脸识别应用中的反欺诈技术——人脸活体检测。 人脸识别,
本文是《人脸识别完整项目实战》系列博文第1部分,第2节《项目系统架构设计》,本章内容系统介绍:人脸系统系统的项目架构设计,包括:业务架构、技术架构、应用架构和数据架构四部分内容。
LFW数据集(Labeled Faces in the Wild)是目前用得最多的人脸图像数据库。该数据库共13,233幅图像,其中5749个人,其中1680人有两幅及以上的图像,4069人只有一幅图像。图像为250*250大小的JPEG格式。绝大多数为彩色图,少数为灰度图。该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。该数据集有6中评价标准:
深度学习是一种非常强大的机器学习技术,它在许多领域都有广泛的应用。其中,图像识别是深度学习最成功的应用之一。本文将详细介绍深度学习在图像识别方面的应用。
选自arXiv 作者:Kaidi Cao等 机器之心编译 参与:李诗萌、白妤昕、思源 由于类别样本不均衡,人脸检测只在正脸识别上有优秀的表现,它们很难识别侧脸样本。近日,香港中文大学和商汤科技等研究者提出了一种在深度表示空间中通过等变映射在正脸和侧脸间建立联系的方法,该方法的计算开销较少,但可以大大提升侧脸识别效果。 引言 深度学习的出现大大推动了人脸识别的发展。而人脸识别的焦点倾向于以正脸附近为中心,然而在不受限的环境中进行人脸识别,并不能保证其结果。尽管人类从正面识别侧面的表现只比从正面识别正面的表现差
们生存的这个星球上,居住着70多亿人。每个人的面孔组成部分相同,它们之间的大体位置关系也是固定的,并且每张脸的大小差异也不大。然而,它们居然就形成了那么复杂的模式——即使是面容极其相似的双胞胎,也能由微妙的差别区分出来。人脸特征如同指纹一样,无法找到完全相同的存在。那么,区分如此众多的不同人脸的“特征”到底是什么?是否可以设计出与人类一样能够自动识别人脸的机器?这是近几十年来被广泛研究着的热门问题。随着AI技术的发展,也取得了显著的突破。
本文第一部分介绍在WIDER FACE全部测试中斩获第一的人脸检测算法Face R-FCN,第二部分介绍在MegaFace Challenge 2所有测试斩获第一的人脸识别算法Face CNN,第三部分介绍这些人脸技术的应用方向与前景。 腾讯AI Lab在国际最大、最难的人脸检测平台WIDER FACE与最热门权威的人脸识别平台MegaFace的多项评测指标中荣膺榜首,刷新行业纪录,展现其在计算机视觉领域中,特别是人脸技术上的强劲实力。 研究上,目前腾讯AI Lab已通过arXiv平台发表论文公开部分技术
本文来自旷视研究院,作者:闫东。AI 科技评论获授权转载。如需转载,请联系旷视研究院。
DeepFace:4.4M训练集,训练6层CNN + 4096特征映射 + 4030类Softmax,综合如3D Aligement, model ensembel等技术,在LFW上达到97.35%。
人脸识别技术在安防领域得到了广泛的应用,但是传统的人脸识别算法存在着准确率低、受光线、角度、表情等影响的问题。近年来,深度学习技术的发展使得人脸识别算法的准确率得到了大幅度的提高。本文将介绍如何利用深度学习技术提高人脸识别的准确率。
AI 成为新基建风口模式下的一个重要选题,让人们对于 AI 的热情空前高涨。从一开始的烧钱阶段到今天的确定性发展,AI 一直渗透着人们的生活,从自动驾驶到人脸识别都是如此。其中,人脸识别技术应用较为广泛。
如果你现在正在阅读这篇文章,那么你可能已经阅读了我的介绍文章(JS使用者福音:在浏览器中运行人脸识别)或者之前使用过face-api.js。如果你还没有听说过face-api.js,我建议你先阅读介绍文章再回来阅读本文。
在这篇文章中,你将学会如何使用OpenCV、Python和深度学习在图像和视频流中执行人脸识别。我们今天将在这里使用的基于深度学习的面部嵌入,既高度准确又能够实时执行。
▌SqueezerFaceNet: Reducing a Small Face Recognition CNN Even More Via Filter Pruning
新智元报道 来源:eurekalert.org 编辑:肖琴 【新智元导读】多伦多大学研究人员设计新算法,通过动态地干扰人脸识别工具来保护用户的隐私。结果表明,他们的系统可以将原本可检测到的人脸比例
在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等等的不同,同一个人的面孔照片在照片象素层面上差别很大,凭借专家们的经验与试错难以取出准确率较高的特征值,自然也没法对这些特征值进一步分类。深度学习的最大优势在于由训练算法自行调整参数权重,构造出一个准确率较高的f(x)函数,给定一张照片则可以获取到特征值,进而再归类。本文中笔者试图用通俗的语言探讨人脸识别技术,首先概述人脸识别技术,接着探讨深度学习有效的原因以及梯度下降为什么可以训练出合适的权重参数,最后描述基于CNN卷积神经网络的人脸识别。
个人主页--> https://xiaosongshine.github.io/
output:如果图片是对应的K人中的一人,则输出此人ID,否则验证不通过 ,人脸识别比人脸验证更难一些,如果一个人脸验证系统的正确率为99%,即错误率为1%,将这个人脸验证系统应用到另一个人脸识别系统,犯错几率就变为了K倍.即K%
人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术发展,并根据作者在相关领域的实践给出一些实用方案设计,期待能对感兴趣的读者有所裨益。 一、概述 通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/79055467
最近,人们不仅对Transformer的NLP,而且对计算机视觉也越来越感兴趣。我们想知道Transformer是否可以用于人脸识别,以及它是否比cnns更好。
最近,我已经阅读了很多与计算机视觉相关的资料并做了大量实验,这里介绍了在该领域学习和使用过程中有意思的内容。
随着计算机与人工智能技术的不断发展,图像识别已经成为一项重要而具有挑战性的任务。卷积神经网络(Convolutional Neural Network,CNN)作为一种深度学习算法,在图像识别领域取得了巨大的成功。本文将详细介绍CNN在图像识别中的应用,并探讨一些优化策略,以提高其性能和效果。
还有一个有趣的结果,像来自商汤、旷世这样的亚洲算法,白种人和黄种人之间的误判差距就小一些。
最近因为博主科研繁忙,没有时间更新,在此向所有关注的您说一声对不起!希望没有计算机视觉战队大家依然科研顺利,生活愉快,也希望大家时刻关注我们的平台,宣传计算机视觉战队,谢谢! ---- 今天我来给大家讲讲人脸识别的一些小事,希望您能有些收获,谢谢! n 主要内容 卷积神经网络(CNN)已广泛地用于计算机视觉领域,显著地提高了先进的方法。在大多数的CNNs中,softmax损失函数被作为监督信号去训练深度模型。为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。中心损失同时学
最近因为比较繁忙,没有及时在“计算机视觉战队”平台更新,在此向所有关注的同学说一声抱歉!希望这段日子大家依然科研顺利,生活愉快,嘿嘿!
领取专属 10元无门槛券
手把手带您无忧上云