转自:http://blog.csdn.net/beyond0824/article/details/6009908
numpy.random.normal(loc=0,scale=1e-2,size=shape)
NumPy是Python中科学计算的基础包,它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。
前几天,后台老有小伙伴留言“爱心代码”。这不是Crossin很早之前发过的内容嘛,怎么最近突然又被人翻出来了?后来才知道,原来是一部有关程序员的青春偶像剧《点燃我,温暖你》在热播,而剧中有一段关于期中考试要用程序画一个爱心的桥段。
数据的处理、分析和可视化已经成为Python近年来最为重要的应用领域之一,其中数据的可视化指的是将数据呈现为漂亮的统计图表,然后进一步发现数据中包含的规律以及隐藏的信息。
从RStudio官网下载MacOS版本RStudio安装包。对于MacOS,安装选择默认路径即可。
numpy是进行科学运算不可或缺的工具,很多其他科学计算的库也是基于numpy的,比如pandas
轴的概念 :轴是NumPy模块里的axis,指定某个axis就是沿着axis做相关操作
python数据科学基础库主要是三剑客:numpy,pandas以及matplotlib,每个库都集成了大量的方法接口,配合使用功能强大。平时虽然一直在用,也看过很多教程,但纸上得来终觉浅,还是需要自己系统梳理总结才能印象深刻。本篇先从numpy开始,对numpy常用的方法进行思维导图式梳理,多数方法仅拉单列表,部分接口辅以解释说明及代码案例。最后分享了个人关于axis和广播机制的理解。
作者:夏尔康 https://ask.hellobi.com/blog/xiaerkang/4129 在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。 因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差
Normalization是一个统计学中的概念,我们可以叫它归一化或者规范化,它并不是一个完全定义好的数学操作(如加减乘除)。它通过将数据进行偏移和尺度缩放调整,在数据预处理时是非常常见的操作,在网络的中间层如今也很频繁的被使用。
生物学和数学对概念化、形式化和抽象化的需求与日俱增。数学对于分析和表征随机变化特别重要,如人群中个体的大小和体重、他们对化学物质的敏感度,事件发生的时间等。这些数据的频率分布是决定可以对任何数据集有效执行统计分析类型的主要因素。许多广泛使用的统计方法,如方差分析(ANOVA)和回归分析,都要求数据服从正态分布,但在使用这些技术时,很少对数据的频率分布进行检验。
假设指的是当我们没有足够的证据支持一个结果时,先可以假定一个结果。这个事先给出的假定结果,就叫做原假设(或零假设, H0),同时提出与之相对应的假设,叫做备择假设(H1)。
算法思想:含有隐变量的极大似然估计 我们经常会从样本观察数据中,找出样本的模型参数。 最常用的方法就是极大化模型分布的对数似然函数。 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参数。怎么办呢?这就是EM算法可以派上用场的地方了。那么先复习一下极大似然估计。 极大似然估计(MLE) 直接举个例子: 某位同学与一位猎人一起外出打猎,一只野兔从前方窜过。只听一声枪响,野兔应声到下,如果要你推测,这一发命中的子弹是谁打
compareGroups包可以通过分组变量来创建单变量分析结果的基线特征表,在创建出表格后可以导出各种格式用于报告。
后来,德国数学家高斯(Gauss)首先将其应用于天文学研究,故正态分布也叫“高斯分布”。
VaR方法作为当前业内比较流行的测量金融风险的方法,具有简洁,明了的特点,而且相对于方差来讲,更多的将投资人的损失作为风险具有更好的合理性。
最近我们被客户要求撰写关于极值理论EVT的研究报告,包括一些图形和统计输出。 “In cauda venenum”是您在极值理论一书中看到的第一句话:Laurens de Haan 和 Anna Ferreira 的介绍,这是关于您在应用 EVT 时将要处理的数据的性质的非常富有表现力的句子,极端数据通常具有更重要的尾部信息,反映真实行为
主要是理解相关数学概念,不偏倚语言。为了让掌握或学习不同语言的读者都能阅读,本号特提供两种语言版本。
金融资产/证券已使用多种技术进行建模。该项目的主要目标是使用几何布朗运动模型和蒙特卡罗模拟来模拟股票价格。该模型基于受乘性噪声影响的随机(与确定性相反)变量
将价格动态转换为收益(2),用几何时间序列(4)计算期望收益(3),而不是算术平均(收益率的波动越大,算术平均和几何平均之间的差异越大)。
图形展示是最高效且形象的数据描述手段,因此巧妙的图像展示是高质量数据分析报告的必备内容,因此强大的图形展示功能也是统计分析软件的必备功能。R语言提供了强大的吐血展示功能。今天我由简单到复杂分别和小伙伴
assert这个关键字我们称之为“断言”,当这个关键字后边的条件为假的时候,程序自动崩溃并抛出AssertionError的异常。
copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它 。
先考虑一个在 P 测度下的标准正态随机变量 X1 ~ N(0, 1) 和 X2 ~ N(-μ, 1),令事件 A = {a ≤ X ≤ y},我们可写出 X1 和 X2 满足 A 的概率为
R语言是统计语言,概率又是统计的基础,所以可以想到,R语言必然要从底层API上提供完整、方便、易用的概率计算的函数。让R语言帮我们学好概率的基础课。 1. 随机变量 · 什么是随机变量? · 离散型随机变量 · 连续型随机变量 1). 什么是随机变量? 随机变量(random variable)表示随机现象各种结果的实值函数。随机变量是定义在样本空间S上,取值在实数载上的函数,由于它的自变量是随机试验的结果,而随机实验结果的出现具有随机性,因此,随机变量的取值具有一定的随机性。 R程序:生成一个在(0,1,
推荐理由:本书用诙谐有趣的讲述方式为大家介绍了python的基本语法,非常适合非计算机专业的初学者作为入门书来看。在这个过程中,该书会让你完成一系列习题,而你则可以通过反复练习来学到技能,这些习题也是专为反复练习而设计的。对于一无所知的初学者来说,在能理解更复杂的话题之前,这可以说是最有效的学习方式。
按照100分制,90分以上成绩为A,80到90为B,60到80为C,60以下为D,写一个程序,当用户输入分数,自动转换为ABCD的形式打印。
这部分主要是介绍如何写出似然函数,通过正态分布,线性回归为例子,并通过R语言编程实现。希望大家可以有所收获。
在本工作表中,我们将研究价格、收益率和波动性。波动性通常用收益率的均方差来衡量,例如夏普比率的分母,它被用作风险的衡量标准。我们将使用股票价格的平均对数收益率和波动性(对数回报的均方差)来模拟股票价格。
茶碱数据文件报告来自抗哮喘药物茶碱动力学研究的数据。给 12 名受试者口服茶碱,然后在接下来的 25 小时内在 11 个时间点测量血清浓度(点击文末“阅读原文”获取完整代码数据)。
1.rnorm 函数:这是R语言中用于生成正态分布的随机数的函数。rnorm(50) 将生成50个服从标准正态分布(均值为0,标准差为1)的随机数。
正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称呼,高斯分布(Gaussian distribution)。正态分布是自然科学与行为科学中的定量现象的一个方便模型。
R是一种用于分析数据的领域特定语言。为什么数据分析需要自己的领域特定语言(DSL) ? R语言擅长些什么,不擅长什么?开发人员该如何利用R语言的优势并减轻其弱点? 在GOTO Conference中,
老板觉得课件的图形太过模糊和单调,于是想让我用可视化软件复现一下,做的更加高清、精美些。
作者:Dishashree Gupta 翻译:闵黎 卢苗苗 校对:丁楠雅 本文长度为6500字,建议阅读20分钟 本文是Analytics Vidhya所举办的在线统计学测试的原题,有志于成为数据科学家或者数据分析师的同仁可以以这41个问题测试自己的统计学水平。 介绍 统计学是数据科学和任何数据分析的基础。良好的统计学知识可以帮助数据分析师做出正确的商业决策。一方面,描述性统计帮助我们通过数据的集中趋势和方差了解数据及其属性。另一方面,推断性统计帮助我们从给定的数据样本中推断总体的属性。了解描述性和
之前我们通过YUV数据格式的处理知道,只要保留Y的数据,就是灰度的图片。但是OpenGL中处理的是RGB格式的数据,我们要如何去取得灰度图呢? 我们可以通过公式,计算出新的RGB值,就是灰度的图片了。
在差异表达基因分析后,我们通常会选择一些显著差异表达的基因进行进一步的可视化分析,例如箱线图。箱线图是一种用于显示一组数据分散情况资料的统计图,包括最大值、最小值、中位数、上四分位数(Q3,75th percentile)和下四分位数(Q1,25th percentile)。
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。在定义上,偏度是样本的三阶标准化矩:
区间估计,首先找到所求值的点估计,然后根据数据获得所求值得抽样分布,确定信赖水平(可信度),最后得到相应信赖水平下的信赖区间。
选自arXiv 作者:Hanqing Zhao等 机器之心编译 参与:刘晓坤、李亚洲 排序一直是计算机科学中最为基础的算法之一,从简单的冒泡排序到高效的桶排序,我们已经开发了非常多的优秀方法。但随着机器学习的兴起与大数据的应用,简单的排序方法要求在大规模场景中有更高的稳定性与效率。中国科技大学和兰州大学等研究者提出了一种基于机器学习的排序算法,它能实现 O(N) 的时间复杂度,且可以在 GPU 和 TPU 上高效地实现并行计算。这篇论文在 Reddit 上也有所争议,我们也希望机器学习能在更多的基础算法上展
如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值。
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Acce
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Ac
NumPy(Numerical Python) 是科学计算基础库,它提供了大量科学计算相关功能。比如数据统计,随机数生成等。其提供最核心类型为多维数组类型(ndarray),支持大量的维度数组与矩阵运算,NumPy支持向量处理ndarray对象,提高程序运行速度。
对数组运算相当于对数组每一个元素进行运算 a = np.arange(24).reshape((2,3,4))
今天是五月的最后一天,离新一轮的毕业季也越来越近,不少准毕业生都开始抱怨求职不易。 毕竟史上最多毕业生也不是吹吹而已,虽然每年的毕业人数都在增长,但今年更是突破千万大关达到了1076万人,不少人都表示可能是高校毕业生就业工作最为艰难的一年。 疫情反复与宏观经济下行交织在一起,2022年一季度高校毕业生景气指数CIER降至0.71,这是自2020年疫情暴发以来的最低点。大环境不好,就业艰难,行行都难,其中文科专业的学生更是难上加难。 如今,不少大学生在争相当码农,甚至有人吐槽不少专业只分为三种:“考公考编专
领取专属 10元无门槛券
手把手带您无忧上云