首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    「R」从 R 到 Rcpp

    参考图书:《Rcpp:R 与 C++ 的无缝整合》 Rcpp 的主要目的在于使得开发 R 语言的 C++ 相关拓展变得更加容易、更少出错。 我们首先从斐波那契数列问题开始探索 Rcpp。...int x = Rcpp::as(xs); int fib = fibonacci(x); return (Rcpp:wrap(fib)); } as 和 wrap 是 Rcpp 很重要的两个转换函数...将输入参数 xs 由 R 输入的 SEXP 类型转换为整型,而 wrap 将 c++ 得到的整型结果封装为 SEXP 类型,从而可以使得这个创建的函数可以被 .Call() 调用,完成 c++ 的计算与输入输出的相互传递...在 fibonacci.cpp 中写入如下内容: #include Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] int fibonacci(const...当然,强大的 Rcpp 不仅仅如此,它还提供了诸多的与 R 交互的数据类型,后续再学习分享。

    1.4K10

    社交网络分析的 R 基础:(三)向量、矩阵与列表

    ,将第一个向量的每个元素与第二个向量的相对应元素进行与运算 | 元素逻辑或运算符,将第一个向量的每个元素与第二个向量的相对应元素进行或运算 && 逻辑与运算符,只对两个向量的第一个元素进行与运算...数学函数和统计函数在矩阵中的用法与在向量中的用法相同。...这时使用 Rcpp 包调用 C++ 的代码,采用并行计算的方式加快计算速度。对于矩阵的计算操作,安装 Rcpp 包的同时还需要安装 RcppEigen 包。...// [[Rcpp::depends(RcppEigen)]] #include // [[Rcpp::export]] SEXP eigenValues(const Eigen...; } 紧接着在工作区中引入 Rcpp 包与 matrix.cpp 文件,此时就可以调用特征值计算函数 eigenValues() 和特征向量计算函数 eigenVectors()。

    3.4K20

    提升R代码运算效率的11个实用方法

    本文将介绍几种适用于大数据领域的方法,包括简单的逻辑调整设计、并行处理和Rcpp的运用,利用这些方法你可以轻松地处理1亿行以上的数据集。...5.使用 which()语句 利用which()语句来筛选数据集,我们可以达到Rcpp三分之一的运算速率。 ?...6.利用apply族函数来替代for循环语句 本部分将利用apply()函数来计算上文所提到的案例,并将其与向量化的循环语句进行对比。...8.利用Rcpp 截至目前,我们已经测试了好几种提升运算效率的方法,其中最佳的方法是利用ifelse()函数。如果我们将数据量增大十倍,运算效率将会变成啥样的呢?...接下来我们将利用Rcpp来实现该运算过程,并将其与ifelse()进行比较。 ? 下面是利用C++语言编写的函数代码,将其保存为“MyFunc.cpp”并利用sourceCpp进行调用。 ?

    1.9K80

    《高效R语言编程》7--高效优化

    软件配置 需要使用C++编译器,安装方法取决于操作系统,Linux:一般安装了R就会安装了;Mac:Xocode;Windows:Rtools,与版本要对应。...需要用到的包:microbenchmark, ggplot2movies, profvis, Rcpp 代码分析 首先是确定哪个是瓶颈,Rprof()是可以分析的一个内置工具,但是这个结果不确定,取决于外部环境...is.na与anyNA 想了解一具向量是否包含任何缺失值,anyNA()更高效。 矩阵 数据框中提取行比矩阵中慢约150倍。...Rcpp C++是一个现代、快速并具有较强支持度的语言,包含各种库。Rcpp提供了一个友好的API,编写高性能代码,C++中瓶颈的典型是地址循环与递归函数。...add_r <- function(x, y) x * y # R语言版 # C++版 library(Rcpp) cppFunction( double add_cpp(double x, double

    1.7K40

    提升R代码运算效率的11个实用方法——并行、效率

    本文将介绍几种适用于大数据领域的方法,包括简单的逻辑调整设计、并行处理和Rcpp的运用,利用这些方法你可以轻松地处理1亿行以上的数据集。...5.使用 which()语句 利用which()语句来筛选数据集,我们可以达到Rcpp三分之一的运算速率。 ?...6.利用apply族函数来替代for循环语句 本部分将利用apply()函数来计算上文所提到的案例,并将其与向量化的循环语句进行对比。...8.利用Rcpp 截至目前,我们已经测试了好几种提升运算效率的方法,其中最佳的方法是利用ifelse()函数。如果我们将数据量增大十倍,运算效率将会变成啥样的呢?...接下来我们将利用Rcpp来实现该运算过程,并将其与ifelse()进行比较。 ? 下面是利用C++语言编写的函数代码,将其保存为“MyFunc.cpp”并利用sourceCpp进行调用。 ?

    1.4K50

    For循环与向量化(Vectorization)

    For循环与向量化(Vectorization) 写在前面 感谢水友们积极的提问,大猫和村长在此再次表示衷心的感谢。...由于我们需要做的是向量中某一个元素与前一个元素的处理结果,那么只需要将元素往后进行移位,与原来的向量进行一一对应的处理即可,这样便达到了以向量进行处理的模式。...R语言提供了一个很好的C++语言的接口,Rcpp包能够比较方便调用C++的语句进行操作。...(若有对Rcpp感兴趣的同学可以戳这里进行了解) library(microbenchmark) Rcpp::cppFunction('NumericVector growthRCL(NumericVector...通过运行结果可以发现,Rcpp调用的底层循环略优于data.table的向量化,运行时间在0.03s左右。

    2.2K30
    领券