准备工作 在开始清理数据集之前,最好先大致了解一下数据。 有哪些功能? 预期的类型是什么(int,float,string,boolean)? 是否有明显的缺失数据(熊猫可以检测到的值)?...是否还有其他类型的丢失数据不太明显(无法通过Pandas轻松检测到)? 了说明我的意思,让我们开始研究示例。 我们要使用的数据是非常小的房地产数据集。...这些是Pandas可以检测到的缺失值。 回到我们的原始数据集,让我们看一下“ ST_NUM”列。 ? 第三列中有一个空单元格。在第七行中,有一个“ NA”值。 显然,这些都是缺失值。...3 2 n/a 3 1 4 3 5 NaN 6 2 7 -- 8 na Out: 0 False 1 False 2 False...总结缺失值 清除缺失的值后,我们可能要对它们进行汇总。例如,我们可能要查看每个功能的缺失值总数。
Pandas 是一个强大的分析结构化数据的工具集,它的使用基础是Numpy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提供数据清洗功能。...每个插补数据集合都用针对完整数据集的统计方法进行统计分析。 对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。...df.equals(df) True 其次,它在numpy中的类型为浮点,由此导致数据集读入时,即使原来是整数的列,只要有缺失值就会变为浮点型。...练习 【练习一】现有一份虚拟数据集,列类型分别为string/浮点/整型,请解决如下问题。...np.nan) 【练习二】 现有一份缺失的数据集,记录了36个人来自的地区、身高、体重、年龄和工资,解决如下问题: pd.read_csv('data/Missing_data_two.csv').head
'NA,NA,140000\n') 要从创建的CSV文件中加载原始数据集,我们导入pandas包并调用read_csv函数。...该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。...通过位置索引iloc,我们将data分成inputs和outputs,其中前者为data的前两列,而后者为data的最后一列。对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。...由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。...巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。
每个插补数据集合都用针对完整数据集的统计方法进行统计分析。 对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。...df.equals(df) True 其次,它在numpy中的类型为浮点,由此导致数据集读入时,即使原来是整数的列,只要有缺失值就会变为浮点型。...方法 这个函数的功能往往就是在读取数据时,就把数据列转为Nullable类型,是1.0的新函数。...练习 【练习一】现有一份虚拟数据集,列类型分别为string/浮点/整型,请解决如下问题。...np.nan) 【练习二】 现有一份缺失的数据集,记录了36个人来自的地区、身高、体重、年龄和工资,解决如下问题: pd.read_csv('data/Missing_data_two.csv').head
,这使得使用 pandas 分析大于内存数据集的数据集有些棘手。...即使是占用相当大内存的数据集也变得难以处理,因为一些 pandas 操作需要进行中间复制。 本文提供了一些建议,以便将您的分析扩展到更大的数据集。...这是对提高性能的补充,后者侧重于加快适���内存的数据集的分析。 加载更少的数据 假设我们在磁盘上的原始数据集有许多列。...通过使用更高效的数据类型,您可以在内存中存储更大的数据集。...加载更少的数据 假设我们在磁盘上的原始数据集有许多列。
基于IF的网站异常流量检测 小P:最近渠道好多异常数据啊,有没有什么好的办法可以识别这些异常啊 小H:箱线图、 都可以啊 小P:那我需要把每个特征都算一遍吗?不是数值的怎么算啊?...小H:你说的是高维数据啊。。。那就只能用算法去检测了,可以尝试IF(孤立森林)算法 IF全称为Isolation Forest,正如字面含义,在一片森林(数据集)中找到被孤立的点,将其识别为异常值。...'clientId'],axis=1) data_dropna.shape (10492, 44) # 填充NA列 # 找到NA列 cols_is_na = data_dropna.isnull()...== True] print(data_dropna[na_cols].dtypes) # 填充NA列 print(data_dropna[na_cols].head()) #print(type(data_dropna.../{1}'.format(outlier_count.iloc[0], data_merge.shape[0])) # 输出异常的结果数量 outliers: 1958/10492 结果展示 #
本次来介绍关于缺失值数据处理的几个常用方法。 一、缺失值类型 在pandas中,缺失数据显示为NaN。缺失值有3种表示方法,np.nan,none,pd.NA。...np.nan == np.nan >> False 也正由于这个特点,在数据集读入以后,不论列是什么类型的数据,默认的缺失值全为np.nan。...开发者也注意到了这点,对于不同数据类型采取不同的缺失值表示会很乱。pd.NA就是为了统一而存在的。...pd.NA的目标是提供一个缺失值指示器,可以在各种数据类型中一致使用(而不是np.nan、None或者NaT分情况使用)。...那么直接在上面的isnull()返回的结果上直接应用.sum()即可,axis默认等于0,0是列,1是行。
所有数据和代码可在我的GitHub获取: https://github.com/xiaoyusmd/PythonDataScience 一、缺失值类型 在pandas中,缺失数据显示为NaN。...np.nan == np.nan >> False 也正由于这个特点,在数据集读入以后,不论列是什么类型的数据,默认的缺失值全为np.nan。...开发者也注意到了这点,对于不同数据类型采取不同的缺失值表示会很乱。pd.NA就是为了统一而存在的。...pd.NA的目标是提供一个缺失值指示器,可以在各种数据类型中一致使用(而不是np.nan、None或者NaT分情况使用)。...那么直接在上面的isnull()返回的结果上直接应用.sum()即可,axis默认等于0,0是列,1是行。
,服从均值为0,方差为某定值s2的高斯分布。...=0) #转化为矩阵形式,进行最小二乘法运算,即矩阵的运算 x1 = np.mat(x_train) y1 = np.mat(y_train).reshape(-1,1)#转化为一列-1表示一后面1列为标准...path="household_power_consumption_1000.txt" df = pd.read_csv(path,sep=";") #数据处理,包括,清除空数据 df1=df.replace...,np.nan) data = df1.dropna(axis=0,how="any") #把数据中的字符串转化为数字 def data_formate(x): t = time.strptime...测试集上R2: 0.13627227933073027 rmse: 4.766714115205903 image.png 关于R2的概念,他是衡量数据集是否为线性的依据。
EPA 燃油经济性数据集非常棒,因为它包含许多不同类型的信息,您可以对其进行排序上,从文本到数字数据类型。该数据集总共包含八十三列。 要继续,您需要安装pandas Python 库。...将id列设置为索引可能有助于链接相关数据集。例如,EPA 的排放数据集也用于id表示车辆记录 ID。这将排放数据与燃油经济性数据联系起来。...这在其他数据集中可能更有用,例如列标签对应于一年中的几个月的数据集。在这种情况下,按月按升序或降序排列数据是有意义的。 在 Pandas 中排序时处理丢失的数据 通常,现实世界的数据有很多缺陷。...了解na_position参数.sort_values() .sort_values()接受一个名为 的参数na_position,它有助于在您排序的列中组织缺失的数据。...默认情况下,此参数设置为last,将NaN值放置在排序结果的末尾。要改变这种行为,并在你的数据帧先有丢失的数据,设置na_position到first。
header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...how:表示删除缺失值的方式。 thresh:表示保留至少有N个非NaN值的行或列。 subset:表示删除指定列的缺失值。 inplace:表示是否操作原数据。..., np.NaN]}) # 使用isna()方法检测na_df中是否存在缺失值 na_df.isna() # 计算每列缺失值的总和 na_df.isnull...个非NaN值的行 na_df.dropna(thresh=3) # 缺失值补全|整体填充 将全部缺失值替换为 * na_df.fillna("*") 2.3 重复值处理 2.3.1 重复值的检测 pandas...3σ原则并不适用于任意数据集,而只适用于符合或近似正态分布的数据集。
在R语言中,涉及到数据去重与缺失值处理的函数一共有下面这么几个: unique distinct intersect union duplicated #布尔判断 is.na()/!...#交集与补集: dplyr中提供了两个函数可以执行交集与补集操作: duplicated(mydata$B) #返回重复对象的布尔值 mydata[!...pandas中的序列和数据框都有固定的缺失值检测、描述、差值方法: myserie=pd.Series(["A","B",np.nan,"C"]) mydata=pd.DataFrame({ "A":[...mydata.dropna(how="all",axis=1) #丢弃含有缺失值的行或者列 #缺失值填充: fillna函数一共两个参数: value表示要插补的值 method表示缺失值插补方法 myserie.fillna...(0) mydata.fillna(0) ?
1)处理pandas的缺失值(NA or NaN) 使用reindex,我们创建了一个缺失值的DataFrame。 在输出中,NaN表示不是数字。...sum(): 在对数据求和时,NA将被记为0 当所属数据全为NA或者NAN时,结果也将是NA rint(df['one'].sum()) """ 输出: 1.0316327375313081 "..."" 3)清除/填充缺失值 pandas提供了fillna()函数中的几种方式来填充缺少数据。...,比如说填充众数,对每一列的缺失值,填充当列的众数。...但可能存在某列缺失值过多,众数为nan的情况,因此可以将每列nan值删除掉,对之后的数据取众数。
文件中读取所有表格数据 read_json 从JSON字符串中读取数据 read_sql 将SQL查询结果读取为pandas的DataFrame read_stata 读取Stata格式的数据集 read_feather...= ',', na_values=sentials) -----结果----- something a b c d message 0 one 1 2 3.0 4 NaN 1...one 1 2 3.0 4 NaN 1 two 5 6 NaN 8 world 将数据写入文本文件:数据写入文本文件与数据读取相反,用到了to_csv方法。...可以指定行和列的标签是否被写入,值为True或False;columns可以根据指定的列的顺序传入。...,默认为逗号 (2)na_rep:标注缺失值 (3)index:是否输出索引,默认输出 (4)header:是否输出列名,默认输出 (5)columns:指定输出时列的顺序 数据的读取和存储十分重要,规范化的数据能为后续的数据分析大大节约时间
许多教程中的数据与现实世界中的数据之间的差异在于,真实世界的数据很少是干净和同构的。特别是,许多有趣的数据集缺少一些数据。为了使事情变得更复杂,不同的数据源可能以不同的方式标记缺失数据。...默认情况下,dropna()将删除包含空值的所有行: df.dropna() 0 1 2 1 2.0 3.0 5 或者,你可以沿不同的轴删除 NA 值; axis = 1删除包含空值的所有列: df.dropna...(axis='columns') 2 0 2 1 5 2 6 但这也会丢掉一些好的数据; 你可能更愿意删除全部为 NA 值或大多数为 NA 值的行或列。...你也可以指定how ='all',它只会丢弃全部为空值的行/列: df[3] = np.nan df 0 1 2 3 0 1.0 NaN 2 NaN 1 2.0 3.0 5 NaN 2 NaN 4.0...参数允许你为要保留的行/列指定最小数量的非空值: df.dropna(axis='rows', thresh=3) 0 1 2 3 1 2.0 3.0 5 NaN 这里删除了第一行和最后一行,因为它们只包含两个非空值
在本章中,我会讨论处理缺失数据、重复数据、字符串操作和其它分析数据转换的工具。下一章,我会关注于用多种方法合并、重塑数据集。 7.1 处理缺失数据 在许多数据分析工作中,缺失数据是经常发生的。...表7-1列出了一些关于缺失数据处理的函数。 ? 表7-1 NA处理方法 滤除缺失数据 过滤掉缺失数据的办法有很多种。...你可能希望丢弃全NA或含有NA的行或列。...1 1.0 NaN NaN 3 NaN 6.5 3.0 用这种方式丢弃列,只需传入axis=1即可: In [24]: data[4] = NA In [25]: data Out[25...对于许多数据集,你可能希望根据数组、Series或DataFrame列中的值来实现转换工作。
当处理数据集时,有时候会遇到包含NaN值的情况。假设我们有一个包含学生成绩的数据集,其中某些学生的成绩可能缺失,用NaN表示。现在我们需要计算每个学生的平均成绩,并将平均成绩转换为整数类型。...以下是一个使用Pandas库实现的示例代码,展示了如何处理NaN值并转换为整数:pythonCopy codeimport pandas as pd# 创建包含学生成绩的数据集data = {'Name...接着,使用fillna函数将NaN值替换为0,再使用astype方法将浮点数转换为整数类型。最后,打印输出了处理后的数据集。...例如,进行0除以0的操作会得到NaN,或者对一个非数值类型的变量进行数值运算也会得到NaN。在Python中,NaN表示为浮点数表示法nan。 NaN的特点包括:NaN不等于任何数,包括自己。...处理NaN值是数据清洗与准备的重要环节之一,常见的处理方法包括填充(用合适的值替换NaN)、删除(从数据集中删除包含NaN的行或列)等。整数整数是数学中的一种基本数据类型,用于表示不带小数部分的数字。
使用 pandas 处理小数据集不会遇到性能问题,但是当处理大数据集时(GB级)会遇到性能问题,甚至会因为内存不足而无法处理。...当然使用 spark等工具可以处理大数据集,但是一般的硬件设备使用这些工具也是捉襟见肘,而且 pandas 具有强大的数据清洗方法。...下面是数据集中的一些主要列,查看数据集可以获取所有列信息: date - 比赛日期 v_name - 客队名 v_league - 客队联赛 h_name - 主队名 h_league - 主队联赛 v_score...从上述数据中可以看到,一些列的数据只包含很少的唯一值,也就是说大多数值都是重复的。 先选择一列,看看将其转换为类别类型之后会如何。使用 day_of_week 列数据,只包含了7个唯一值。...1871-05-04 0 Thu CL1 na 1 FW1 na 1 0 2 54.0 D NaN NaN NaN FOR01 200.0
缺失值 NaN ② 由于在Pandas中isnull()方法返回True表示此处为缺失值,所以我们可以对数据集进行切片也可实现找到缺失值。...df[df["A列"].notnull()] 输出: 空值 空值在Pandas中指的是空字符串"",我们同样可以对数据集进行切片找到空值。...= 0)] 输出: 如上所示,我自定义了匿名函数lambda,作用是在文本列的每一行中查找以下文本值:“NA”、“*”、“?” 、“!” 、“#”、“-”,并检查它找到的列表的长度。...如果列表不为零,则表示找到了代表缺失值的字符,因此该行中至少有一个缺失值。 df[df["D列"].apply(lambda x: len(re.findall('NA|[*|?|!...= 0)] 输出: 我们可以对不同列都进行同样的缺失值查询,另外也可以根据自己的实际情况,替换正则表达式中代表缺失值的字符。 ---- 人生苦短,快学Python!
领取专属 10元无门槛券
手把手带您无忧上云