首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas DataFrame的创建方法

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas...DataFrame的修改方法 在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法: ①、把其他格式的数据整理到DataFrame中; ②在已有的DataFrame...2. csv文件构建DataFrame(csv to DataFrame) 我们实验的时候数据一般比较大,而csv文件是文本格式的数据,占用更少的存储,所以一般数据来源是csv文件,从csv文件中如何构建...txt文件一般也能用这种方法。 方法一:最常用的应该就是pd.read_csv('filename.csv')了,用 sep指定数据的分割方式,默认的是',' df = pd.read_csv('.

    2.6K20

    大数据ETL实践探索(9)---- postgresSQL 数据入库使用pandas sqlalchemy 以及多进程

    我想了几种办法: 使用psycopg2 原生 api 使用pgAdmin 页面 建立好table 直接导入csv 使用pandas to_sql 方法 使用 sqlalchemy 批量录入方法 使用python...(dbname) engine = create_engine(dbname, max_overflow=0, # 超过连接池大小外最多创建的连接...module.html ---- pgAdmin 导入 文档:https://www.pgadmin.org/docs/pgadmin4/development/import_export_data.html 导入文件支持...具体导入速度待测试 ---- pandas 数据清洗与to_sql方法录入数据 数据清洗 pandas 数据清洗细节可以参考我的文章: 大数据ETL实践探索(5)---- 大数据ETL利器之 pandas...) 明细['单位名称'] = 住院明细['单位名称'].apply(pandas_to_postgresql.desensitization_location) to_sql 数据录入 参考文档:to_sql

    1.4K30

    一场pandas与SQL的巅峰大战(七)

    本文目录 pandasql的使用 简介 安装 使用 pandas操作MySQL数据库 read_sql to_sql 巅峰系列总结十条(惊喜在此) reference...pandas操作MySQL数据库 这一部分我们来看下pandas直接操作数据库的例子,主要学习read_sql和to_sql的用法。...to_sql 这个函数的作用是,将dataframe的结果写入数据库。提供表名和连接名即可,不需要新建MySQL表。...engine是上文创建的连接。df2就是期望写入的数据,这里只选取了上文df的前五行。需要注意如果不加index=None参数,会把索引也写进去,多一列index。...3.数据存储在数据库中的情况下,优先用SQL(MySQL 或Hive),数据量比较大时,pandas性能会有瓶颈。而如果是文件形式的数据,可以尝试pandas,当然你也可以先导入数据库再做处理。

    1.8K20

    pymysql ︱mysql的基本操作与dbutils+PooledDB使用

    -写入 2.3 常规-批量写入 2.4 常规-更新 2.5 常规-删除 2.6 pandas写回——to_sql 2.6.0 sqlalchemy的格式 2.7 pandas 读出——read_sql...2.8 SQL + pandas 来创建表结构 2.9 更新时间格式 2.10 to_sql 和常规insert的优劣势 3 其他基础设置 3.1 更新注释 3.2 批量修改字符串类型 3.3 查看表名...连接 参考:利用pandas的to_sql将数据插入MySQL数据库和所踩过的坑 from sqlalchemy import create_engine engine = create_engine...如果数据源是来自 CSV 之类的文本文件,可以手写 SQL 语句或者利用 pandas get_schema() 方法,如下例: import sqlalchemy print(pd.io.sql.get_schema...利用to_sql导入数据 import pandas as pd import datetime import pandas as pd import sqlalchemy from sqlalchemy

    4.9K30

    这些pandas技巧你还不会吗 | Pandas实用手册(PART II)

    将函数的inplace参数设为True会让pandas直接修改df,一般来说pandas里的函数并不会修改原始DataFrame,这样可以保证原始数据不会受到任何函数的影响。...通过这样的方式,pandas 让你可以放心地对原始数据做任何坏坏的事情而不会产生任何不好的影响。 将字符串切割成多个列 在处理文本数据时,很多时候你会想要把一个字符串栏位拆成多个栏位以方便后续处理。...条件选取数据 在pandas 里头最实用的选取技巧大概非遮掩(masking)莫属了。masking让pandas 将符合特定条件的样本回传: ?...pandas里的函数使用上都很只管,你可以丢入1个包含多个元素的Python list或是单一str作为参数输入。...这边我们以栏位Ticket为例,另外你也可以使用pandas.Series里的nlargest函数取得相同结果: ?

    1.2K20

    Python:dataframe写入mysql时候,如何对齐DataFrame的columns和SQL的字段名?

    背景: 工作中遇到的问题,实现Python脚本自动读取excel文件并写入数据库,操作时候发现,系统下载的Excel文件并不是一直固定的,基本上过段时间就会调整次,原始to_sql方法只能整体写入,当字段无法对齐...columns时,会造成数据的混乱,由于本人自学Python,也经常在csdn上找答案,这个问题找了两天,并未找到类似解决办法,基本上都是基础的to_sql,再经过灵光乍现后,自己研究出来实现方法,特放出来交流学习...所以我就想着把整个字段名和逗号一起拼接成一个字符串 实例: import pymysql import pandas as pd import numpy as np # 定义函数 def w_sql(...host='xxx', user='xxx', passwd='xxxx', db='xxxx', charset='xxx') #连接数据库 cursor = connent.cursor()#创建游标

    1K10

    使用Python进行ETL数据处理

    在本次实战案例中,我们使用Python的pandas库来读取CSV文件,并将其转换为DataFrame对象,如下所示: import pandas as pd df = pd.read_csv('sales.csv...') 通过上述代码,我们成功将CSV文件转换为DataFrame对象,并可以使用pandas提供的各种方法进行数据处理和转换。...其中,我们使用pandas提供的to_sql()方法,将DataFrame对象转换为MySQL数据库中的表。 四、数据加载 数据加载是ETL过程的最后一步,它将转换后的数据加载到目标系统中。...上述代码中,我们使用pymysql库连接MySQL数据库,然后将DataFrame对象中的数据使用to_sql()方法插入到MySQL数据库中的sales_data表中。...我们使用pandas库将CSV文件读取为DataFrame对象,并对其中的销售数据进行了一些处理和转换,然后使用pymysql库将转换后的数据插入到MySQL数据库中。

    1.6K20

    Python pandas读取Excel文件

    如果安装出现异常,可以还需要先安装openpyxl: pip install openpyxl pandas库提供了几种便捷的方法来读取不同的数据源,包括Excel和CSV文件。...usecols可以是整数、字符串或列表,用于指示pandas仅从Excel文件中提取某些列。...示例Excel文件中的第四个工作表从第4行开始。在没有特别指示的情况下阅读该表,pandas会认为我们的数据没有列名。 图2:非标准列标题,数据不是从第1行开始 这并不好,数据框架需要一些清理。...图3:指定列标题所在行 names 如果不喜欢源Excel文件中的标题名,可以使用names参数创建自己的标题名。...它用于告诉pandas使用什么分隔符来分隔数据。使用这里的示例文本文件(可在知识星球完美Excel社群中下载)可以看到基本上可以使用任何字符作为分隔符。 图6:使用问号(?)

    4.5K40

    Pandas数据读取:CSV文件

    引言Pandas 是 Python 中一个强大的数据分析库,它提供了大量的工具用于数据操作和分析。其中,read_csv 函数是 Pandas 中最常用的函数之一,用于从 CSV 文件中读取数据。...导入库首先,我们需要导入 Pandas 库:import pandas as pd2....日期时间解析问题描述:如果 CSV 文件中包含日期时间字段,默认情况下 Pandas 不会将其解析为日期时间类型。解决方案:使用 parse_dates 参数指定需要解析的列。...空值处理问题描述:CSV 文件中可能包含空值,Pandas 默认将其解析为 NaN。解决方案:使用 na_values 参数指定哪些值应被视为缺失值。...希望本文能帮助你在实际工作中更高效地使用 Pandas 进行数据读取和处理。

    29420

    Pandas数据导出:CSV文件

    一、简介Pandas是Python中用于数据分析和处理的强大库。它提供了灵活高效的数据结构,如DataFrame和Series,使得对数据的处理变得简单易行。...二、基本用法要将Pandas DataFrame导出为CSV文件,最常用的方法就是调用to_csv()函数。...下面是一个简单的例子:import pandas as pd# 创建一个简单的DataFramedata = {'姓名': ['张三', '李四'], '年龄': [20, 22]}df...= pd.DataFrame(data)# 导出为CSV文件df.to_csv('example.csv')这段代码创建了一个包含两个字段(姓名和年龄)的DataFrame,并将其保存到名为example.csv...五、总结本文从基础开始介绍了如何使用Pandas将数据导出为CSV文件,并详细探讨了过程中可能遇到的各种问题及其解决方案。无论是初学者还是有一定经验的开发者,都应该能够从中获得有用的信息。

    21810
    领券