首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MATLAB中的主成分分析

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,它可以将高维数据映射到低维空间,同时保留数据中的主要信息。在MATLAB中,可以使用pca函数进行主成分分析。

以下是一个简单的示例:

代码语言:matlab
复制
% 生成随机数据
X = randn(100, 5);

% 进行主成分分析
pcaObj = pca(X);

% 获取主成分
loadings = loading(pcaObj);

% 可视化主成分
plot(loadings(:,1), loadings(:,2), '.');

在这个示例中,我们首先生成了一个100行5列的随机数据矩阵,然后使用pca函数进行主成分分析,得到了一个pcaObj对象。接着,我们使用loading函数获取了主成分,并将其可视化。

需要注意的是,主成分分析的结果可能会受到数据缩放、中心化等因素的影响,因此在实际应用中需要根据具体情况进行调整。

在MATLAB中,还可以使用fitpca函数进行主成分分析,该函数可以更灵活地控制分析过程。例如,可以使用以下代码对数据进行中心化:

代码语言:matlab
复制
% 中心化数据
X_centered = X - repmat(mean(X), size(X, 1), 1);

% 进行主成分分析
pcaObj = fitpca(X_centered);

% 获取主成分
loadings = loading(pcaObj);

% 可视化主成分
plot(loadings(:,1), loadings(:,2), '.');

总之,主成分分析是一种非常有用的数据降维方法,可以帮助我们提取数据中的主要信息,并减少计算复杂度。在MATLAB中,可以使用pcafitpca函数进行主成分分析。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

数学建模成分分析matlab_成分分析法建模

文章目录 Ⅰ.成分分析成分与原始变量之间关系: PCA降维: Ⅱ.SPSS成分分析步骤如下: A.求指标对应系数 1.方差图与成分矩阵: 2.指标系数=成分矩阵数据/sqrt....然后将数据导入excel进行得分项输出并排序: B.附spss免安装文件地址: Ⅰ.成分分析: ​ 成分分析(Principal Component Analysis,PCA), 将多个变量通过线性变换以选出较少个数重要变量一种...成分分析通常做法是,寻求 原指标的线性组合Fi。...Ⅱ.SPSS成分分析步骤如下: A.求指标对应系数 1.方差图与成分矩阵: 2.指标系数=成分矩阵数据/sqrt(成分相对应特征值) F1=0.353ZX1 +0.042ZX2...,而不是原数据表格数值,目的在于统一不同量纲。)

51520

PCA成分分析学习笔记 + Matlab实现

综述 PCA (Principal Component Analysis) 成分分析是目前最常用数据降维方法之一,主要思路是将n维数据投影到k(n>k)维空间超平面(直线高维推广)上面去,使得各个样本点到超平面的投影距离最小...简单理解就是你给一个人拍照,要选择什么方向拍才能体现这个人最多特征,大概就是给这个人拍一个正面的全身照,才能保留这个人最多图像信息。如果拍侧面照或者从头顶照得到信息就会非常有限。...再举一个二维数据降维到一维例子:图中各个颜色X代表样本坐标点,可以看出相关性比较大(X1轴X2轴单位是inch与cm),所以我们可以找一条直线,将各个样本点投影到直线上,作为我们一维数据。...计算协方差矩阵(covariance matrix)Σ sigma 根据协方差公式: image.png 或者在Matlab中使用 ?...P229或者这里 总结 数据降维意义与作用举例: - 数据压缩:可以提升机器学习算法效率与节省储存空间 - 数据可视化:将数据降维到1-3维,更好地呈现数据 与LDA对比 线性判别分析(Linear

1.4K40
  • 成分(PCA)分析

    成分分析(Principal Component Analysis,PCA), 是一种降维方法,也是在文章发表中常见用于显示样本与样本之间差异性计算工具。...比如我们在进行转录组数据分析时候,每一个样本可以检测到3万个基因,如果有10个这样样本,我们如何判断哪些样本之间相似性能高。这时候,我们可以通过成分分析,显示样本与样本之间关系。...在前期教程【如何快速分析样本之间相关性:Clustvis】,我们已经为大家介绍了什么是成分分析,所以在这里就不过多描述概念了,直接上干货。...本次教程为大家带来是,是如何根据基因表达谱数据,通过运用成分分析方法,显示样本与样本之间差异性。...这样,我们一张成分分析图就做完啦~ 04 初级美化 当然,这些图还有很多不足之处,比如我们想更直观显示两组之间差别,所以我们需要根据点分布计算他们置信区间。 ? ?

    3.8K41

    成分分析

    PCA算法提供了一种压缩数据方式。我们也可以将PCA视为学习数据表示无监督学习算法。这种表示基于上述简单表示两个标准。PCA学习一种比原始输入维数更低表示。...我们已知设计矩阵X成分特征向量给定。从这个角度,我们有 成分分析也可以通过奇异值分解(SVD)得到。具体来说,它们是X右奇异向量。...以上分析指明我们通过线性变换W将数据x投射到z时,得到数据表示协方差矩阵是对角(即 ),立刻可得z元素时彼此无关。...PCA这种将数据变换为元素之间彼此不相关表示能力时PCA一个重要性质。它是消除数据未知变化因素简单表示示例。...在PCA,这个消除是通过寻找输入空间一个旋转(由W确定),使得方差坐标和z相关新表示空间基对齐。

    96260

    成分分析

    概述 成分分析法是一种降维统计方法,在机器学习可以作为数据提取手段。 成分分析:构造一个A,b,使Y=AX+b。其中A维度M*N,X维度N*1,b维度M*1,则Y维度M*1。...成分分析可以看成是一个一层,有M个神经元神经网络(即Y=WTX+b,成分分析和该公式本质一样)。 PCA和自编码器差不多。 成分分析:寻找使方差最大方向,并在该方向投影。...所以: 推而广之,a3: PCA算法流程 注意: PCA在人脸识别应用 对每一个人,用前两次拍摄4张图片训练,用后两次拍摄4张图片测试。...平均脸,就是x均值;特征脸,是每个特征值。 比如a1,面颊特别亮,说明面部是识别最有效地方,而头发处比较黑,说明头发地方不是很有效。 同理,可以把神经网络Y=WT+bW拿出来看一下。...一个通俗易懂例子

    55140

    成分分析

    1 成分分析 简介 成分分析(Principal Component Analysis,PCA),是考察多个变量间相关性一种多元统计方法,基本思想[1]就是在保留原始变量尽可能多信息前提下达到降维目的...3 R语言实战 依据《R语言实战》提供实例,下面用psych程序包USJudgeRatings数据集进行成分分析,这个数据集描述是律师对美国高等法院法官评分情况,部分数据集及各变量含义如下所示...,考虑在进行成分分析时将其剔除,用cor函数检查变量间相关性。...从相关系数矩阵可以发现,有几个变量之间相关性还是非常强,表明这份数据适合做主成分分析。...3.5 成分旋转 旋转后得到成分能更容易解释原始变量,常用旋转方法有: 正交旋转:旋转后成分不相关 斜交旋转:旋转后成分相关 本例采用正交旋转方差极大旋转进行分析: >rc<-principal

    1.1K20

    成分分析

    简述 成分分析(Principal Component Analysis,PCA)是一种在损失很少信息前提下,把多个指标转化为几个综合指标的多元统计分析方法,它核心是数据降维思想,即通过降维手段实现多指标向综合指标的转化...在实际应用,如果原始数据集本身较为复杂,那么使用成分分析可以使我们仅需要考虑几个综合指标,而且又不至于损失太多信息。...总结来说:成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少不相关变量,这些无关变量称为主成分。...,对应特征向量等于第二成分系数;以此类推 计算累积贡献率,选择恰当成分个数; 解释成分:写出前k个成分表达式 确定各样本成分得分 根据成分得分数据,做进一步统计分析 R基础安装包提供了...含平行分析碎石图 factor.plot() 绘制因子分析成分分析结果 fa.diagram() 绘制因子分析成分载荷矩阵 scree() 因子分析成分分析碎石图 判断成分个数

    85420

    成分分析详解_pca成分分析贡献率

    在许多领域研究与应用,往往需要对反映事物多个变量进行大量观测,收集大量数据以便进行分析寻找规律。...由于各变量间存在一定相关关系,因此有可能用较少综合指标分别综合存在于各变量各类信息。成分分析与因子分析就属于这类降维方法。 2....那么一眼就能看出来,数学、物理、化学这三门课成绩构成了这组数据成分(很显然,数学作为第一成分,因为数学成绩拉最开)。为什么一眼能看出来?因为坐标轴选对了!...所以,我们就要用到成分分析处理方法。 3. 数据降维 为了说明什么是数据成分,先从数据降维说起。数据降维是怎么回事儿?...针对第二个问题,我们取上式 ,目标函数 取得最大值,也就是 最大特征值时,对应特征向量方向,就是第一成分u1方向!

    2.5K10

    PCA成分分析

    目前降维算法有很多种,最常用就是PCA成分分析法。...通过这种方式获得坐标轴,我们发现,大部分方差都包含在前面k个坐标轴,后面的坐标轴所含方差几乎为0。...欲使投影后总方差最大,即λ最大,因此最佳投影向量w是特征值λ最大时所对应特征向量,因此,当我们将w设置为与具有最大特征值λ特征向量相等时,方差会达到最大值。这个特征向量被称为第一成分。...通过类似的方式,我们可以方式定义第二第三...第k个成分,方法为:在所有与考虑过方向正交所有可能方向,将新方向选择为最大化投影方差方向。...好了,原理介绍了这么多,最后我们来看下如何通过Python实现PCA成分分析降维实例。下面是部分实例代码 ? 结果如下 ?

    81230

    理解成分分析

    文章同步发表至 我个人独立博客 本文目的是让读者能够通过必要数学证明来详细了解成分分析。...在现实世界数据分析任务,我们面对数据通常较为复杂,例如多维数据。我们绘制数据并希望从中找到各种模式,或者使用数据来训练机器学习模型。...Continue break1 现在让我们来考虑一下数据分析需求。 由于我们想要找到数据模式,所以我们希望数据分布在每个维度上。同时,我们也希望各个维度之间是独立。...那么,成分分析(PCA)是干什么? PCA 试图寻找一组新维度(或者叫一组基础视图),使得所有维度都是正交(所以线性无关),并根据数据在他们上面的方差进行排序。...X 成分是 CxC_xCx​ 特征向量 CyC_yCy​ 第 iii 个对角元素是 XXX 在 iii 维度上方差 总结: [new data]k×n=[top k eigenvectors]

    69430

    成分分析PCA

    原文链接 PCA简介 如图所示,这是一个二维点云,我们想找出方差最大方向,如右图所示,这个最大方向计算,就是PCA做事情。...PCA(Principal Components Analysis),中文名也叫成分分析。它可以按照方差大小,计算出相互正交方向,这些方向也叫方向。...它常用于对高维数据进行降维,也就是把高维数据投影到方差大几个方向上,方便数据分析。...PCA计算很简单: 第一步计算数据协方差矩阵:Cov = ∑ (Di – C) X (Di – C),其中Di是第i个数据,C是数据平均值 然后计算协方差矩阵特征值和特征向量,特征向量就是方向...设PCA方向为D1, D2, ..., Dk, 那么人体几何S = ES + W1 * D1 + W2 * D2 + ... + Wk * Dk,可以用一组权重W = {W1, W2, ..., W3

    1.1K21

    成分分析PCA

    在机器学习,特征维度通常成百上千,给模型设计和优化造成了困扰。因而如何找出对结果影响最大影响因素自然而然成为克服上述问题一个可能途径。...成分分析(Principal Component Analysis,PCA)给人们提供了这样一个方法。...PCA思想是将n维特征映射到k(K<n)个正交维度上,这k个维度能够反映原始变量绝大部分信息,通常表示为原始n维变量某种线性组合,而不是简单从n维特征中去除n-k个特征。...假设数据各主要特征是分布在正交方向上,如果在非正交方向上存在几个方差较大方向,则PCA效果就大打折扣; PCA对于噪声敏感,只能对一些类似高斯分布数据有效,但对于复杂分布数据(如流形分布)无效...因此,首先在所有的线性组合中选取方差最大作为F1;如果F1不足以代表原来M个指标的信息,则再考虑选取F2,此时F1已有的信息不需要出现在F2

    66230

    成分分析 factoextra

    factoextra是一个R软件包,可以轻松提取和可视化探索性多变量数据分析输出,其中包括: 成分分析(PCA),用于通过在不丢失重要信息情况下减少数据维度来总结连续(即定量)多变量数据包含信息...对应分析(CA),它是适用于分析由两个定性变量(或分类数据)形成大型列联表成分分析扩展。 多重对应分析(MCA),它是将CA改编为包含两个以上分类变量数据表格。...多因素分析(MFA)专用于数据集,其中变量按组(定性和/或定量变量)组织。 分层多因素分析(HMFA):在数据组织为分层结构情况下,MFA扩展。...混合数据因子分析(FAMD)是MFA一个特例,致力于分析包含定量和定性变量数据集。 有许多R包实现主要组件方法。...factoextra R软件包可以处理来自多个软件包PCA,CA,MCA,MFA,FAMD和HMFA结果,用于提取和可视化数据包含最重要信息。

    1.8K30

    成分分析(PCA)

    成分分析(PCA) 成分分析(Principal components analysis,简称PCA)是最重要降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛应用。...基于最小投影距离 image.png image.png image.png 基于最大投影方差 image.png PCA算法流程 image.png 简单案例实现 #成分分析 import numpy...tmp+=i num+=1 if tmpSum >= arraySum*percentage: return num #指定一个降维到成分比重阈值...PCA算法主要优点有: 1)仅仅需要以方差衡量信息量,不受数据集以外因素影响。 2)各成分之间正交,可消除原始数据成分相互影响因素。 3)计算方法简单,主要运算是特征值分解,易于实现。...PCA算法主要缺点有: 1)成分各个特征维度含义具有一定模糊性,不如原始样本特征解释性强。 2)方差小成分也可能含有对样本差异重要信息,因降维丢弃可能对后续数据处理有影响。

    66220

    聚类分析成分分析

    聚类分析成分分析 来自黄思思(浙江大学八年制医学生,生信技能树全国巡讲杭州站优秀学员)投稿 聚类分析 01 系统聚类 示例数据一:现有16种饮料热量、咖啡因含量、钠含量和价格数据,根据这4个变量对...下面这张图就形象地展现了如何利用成分分析将二维降至一维。 注意,当数据集中变量高度相关时,PCA 方法特别有用。相关性表明数据存在冗余。...由于这种冗余,PCA 可用于将原始变量减少为较少数量新变量(成分),从而解释了原始变量大多数方差。...,食品、居住、交通通讯和教育贡献率较大,而在第二成分中医疗贡献率较大,在第三成分衣着贡献率较大。...而我们发现大部分变量 cos2 均较高,这与这些变量在之前相关圆接近圆周是一致。这也表明用两个成分能很好地反应这些变量信息。

    67730

    聚类分析成分分析

    聚类分析成分分析 来自黄思思(浙江大学八年制医学生,生信技能树全国巡讲杭州站优秀学员)投稿 聚类分析 01 系统聚类 示例数据一:现有16种饮料热量、咖啡因含量、钠含量和价格数据,根据这4个变量对...下面这张图就形象地展现了如何利用成分分析将二维降至一维。 ? 注意,当数据集中变量高度相关时,PCA方法特别有用。相关性表明数据存在冗余。...由于这种冗余,PCA可用于将原始变量减少为较少数量新变量(=成分),从而解释了原始变量大多数方差。 ? ?...,食品、居住、交通通讯和教育贡献率较大,而在第二成分中医疗贡献率较大,在第三成分衣着贡献率较大。...而我们发现大部分变量cos2均较高,这与这些变量在之前相关圆接近圆周是一致。这也表明用两个成分能很好地反应这些变量信息。

    2.7K54
    领券