首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一文上手Tensorflow2.0之tf.keras|三

= tf.keras.Sequential([ # 添加一个有64个神经元的全连接层,“input_shape”为该层接受的输# 入数据的维度,“activation”指定该层所用的激活函数 layers.Dense...使用“model.fit”来执行模型的训练,其中参数“data”和“labels”分别为训练数据和类标,“epochs”为训练的回合数(一个回合即在全量数据集上训练一次),“batch_size”为训练过程中每一个批次数据的大小...图1 输出结果 在训练模型的工程中,为了更好地调节参数,方便模型的选择和优化,我们通常会准备一个验证集,这里我们同样随机生成一个验证集: val_data = np.random.random((100...例如模型可能有多输入或多输出,模型中的一些网络层需要共享等等。对于这种网络模型的结构较为复杂的情况,我们需要使用到函数式API。...我们实现一个简单的例子: # 单独的一个输入层 inputs = tf.keras.Input(shape=(32,)) # 网络层可以像函数一样被调用,其接收和输出的均为张量 x = layers.Dense

1.6K21

输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字

题目: 输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字。 要求时间复杂度是O(n)。如果有多对数字的和等于输入的数字,输出任意一对即可。...例如输入数组1、2、4、7、11、15和数字15。由于4+11=15,因此输出4和11。...2 因为是求两个数,时间复杂度是O(n),还是排过顺序的数组,那么可以从头和从尾同时找;从尾开始的tail下标大于sum,则tail左移;如果tail和head相加小于sum,则tail右移;指导头尾两个数相加等于求和...;或者tail大于head为止; 代码如下: ''' 题目:输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字。...如果有多对数字的和等于输入的数字,输出任意一对即可。 例如输入数组1、2、4、7、11、15和数字15。由于4+11=15,因此输出4和11。

2.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    畅游人工智能之海 | Keras教程之Keras的知识结构

    Model类模型(使用Keras函数式API)  Keras函数式API是定义复杂模型(如多输出模型、有向无环图、或具有共享层的模型)的方法。 ...要明确三点:①网络层的实例是可调用的,它以张量为参量,并返回一个张量;②输入和输出均为张量,它们都可以用来定义一个模型(Model);③这样的模型可被训练。 ...局部连接层  局部连接层与卷积层工作方式相同,除了权值不共享之外,它在输入的每个不同部分应用不同的一组过滤器。分为1D和2D类。  循环层  该层主要包含RNN和LSTM相关的类。...如Add层计算输入张量列表的和、Subtract计算两个输入张量的差、Concatenate连接一个输入张量的列表等等。 ...TimeDistributed可以将一个层单独应用于一系列时间步的每一步,输入至少为3D,且第一个维度应该是时间所表示的维度;Bidirectional是RNN的双向封装器,可以对序列进行前向和后向计算

    1.1K30

    Keras 中神经网络模型的 5 步生命周期

    在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。这些层的容器是 Sequential 类。...例如,一个小的多层感知器模型,在可见层中有 2 个输入,隐藏层中有 5 个神经元,输出层中有一个神经元,可以定义为: 1model = Sequential() 2model.add(Dense(5,...这在 Keras 中是一个有用的概念,因为传统上与层相关的关注点也可以拆分并作为单独的层添加,清楚地显示它们在从输入到预测的数据转换中的作用。...如何为分类和回归问题选择激活函数和输出层配置。 如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    别磨叽,学完这篇你也是图像识别专家了

    这些已集成到(先前是和Keras分开的)Keras中的预训练模型能够识别1000种类别对象(例如我们在日常生活中见到的小狗、小猫等),准确率非常高。...先前预训练的ImageNet模型和Keras库是分开的,需要我们克隆一个单独github repo,然后加到项目里。使用单独的github repo来维护就行了。...“16”和“19”表示网络中的需要更新需要weight(要学习的参数)的网络层数(下面的图2中的列D和E),包括卷积层,全连接层,softmax层: ?...下图展示了一个构建块(build block),输入经过两个weight层,最后和输入相加,形成一个微架构模块。ResNet最终由许多微架构模块组成。...用Python和上述Keras库来给图像分类 让我们学习如何使用Keras库中预训练的卷积神经网络模型进行图像分类吧。 新建一个文件,命名为classify_image.py,并输入如下代码: ?

    2.7K70

    Keras高级概念

    Keras API 目前为止,介绍的神经网络模型都是通过Sequential模型来实现的。Sequential模型假设神经网络模型只有一个输入一个输出,而且模型的网络层是线性堆叠在一起的。...当仅使用Keras中的Sequential模型类时,多输入模型,多输出模型和类图模型这三个重要的用例是不可能实现的。但是Keras还有另一种更通用和灵活的方式:function API。...这样的模型可以感知深度,这在许多应用中是有用的。在合并两个输入之前,不需要两个独立的模型来从左相机和右相机中提取视觉特征。...这种低级处理可以在两个输入之间共享:即,通过使用相同权重的层来完成,从而共享相同的表示。...参数默认为-1,即输入张量中的最后一个轴。 使用Dense层,Conv1D层,RNN层和Conv2D层并且data_format设置为“channels_last”时。

    1.7K10

    Keras 学习笔记(四)函数式API

    开始使用 Keras 函数式 API Keras 函数式 API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。...网络层的实例是可调用的,它以张量为参数,并且返回一个张量 输入和输出均为张量,它们都可以用来定义一个模型(Model) 这样的模型同 Keras 的 Sequential 模型一样,都可以被训练 from...name='main_output')(x) 然后定义一个具有两个输入和两个输出的模型: model = Model(inputs=[main_input, auxiliary_input], outputs...函数式 API 的另一个用途是使用共享网络层的模型。...input_shape 和 output_shape 这两个属性也是如此:只要该层只有一个节点,或者只要所有节点具有相同的输入/输出尺寸,那么「层输出/输入尺寸」的概念就被很好地定义,并且将由 layer.output_shape

    93720

    深度学习入门基础

    (这个过程可以看作是feature learning过程):先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity...的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数; 2、自顶向下的监督学习...(因为ReLU是线性的,而sigmoid和tanh是非线性的)。 在Caffe中,激活函数是一个单独的层,把它和全连接层,卷据层拆开的好处是更为灵活,便于代码复用和组合。...四、卷积神经网络的本质 卷积神经网络在本质上也是一个多层复合函数,但和普通神经网络不同的是它的某些权重参数是共享的,另外一个特点是它使用了池化层。...训练时依然采用了反向传播算法,求解的问题不是凸优化问题。核心:一个共享权重的多层复合函数。 权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。

    45810

    TensorFlow 图像深度学习实用指南:1~3 全

    以下屏幕快照显示了我们正在设置的三个层(输入层,激活层和输出层),并将它们完全连接在一起: 三层神经网络 这就是中间的这两个循环。...机器学习中发生的许多事情都涉及重复计算这些relu和sigmoid函数的输入。 机器学习模型可能具有通过relu或sigmoid运行的数百,数千甚至数百万个单独的数字参数。...我们将从使用函数式 Keras 模型实际组装神经网络开始,查看输入和层栈以端对端组装神经网络。 然后,我们将解释为什么会有Dropout和Flatten,以及它们对您的模型有什么影响。...最后,我们将显示一个模型摘要:这是一种可视化机器学习模型中参数和层总数的方法。 在这里,我们使用的是 Keras 的函数式模型。 您可以将神经网络视为一系列层,其中每个层均由函数定义。...如下面的屏幕快照所示,这小段代码实际上是一个完整的神经网络: Keras 函数式模型 我们从一个输入层开始,该输入层的形状与我们的一个输入样本相同。

    87520

    keras中文doc之三

    注意当你调用一个模型时,你不仅仅重用了它的结构,也重用了它的权重。 多输入和多输出模型 使用泛型模型的一个典型场景是搭建多输入、多输出的模型。 考虑这样一个模型。...在模型中早点使用主要的损失函数是对于深度网络的一个良好的正则方法。总而言之,该模型框图如下: ? 让我们用泛型模型来实现这个框图 主要的输入接收新闻本身,即一个整数的序列(每个整数编码了一个词)。...这些整数位于1到10,000之间(即我们的字典有10,000个词)。这个序列有100个单词。 最后,我们定义整个2输入,2输出的模型: 共享层 另一个使用泛型模型的场合是使用共享层的时候。...with Convolutions 共享视觉模型 该模型在两个输入上重用了图像处理的模型,用来判别两个MNIST数字是否是相同的数字 视觉问答模型 在针对一幅图片使用自然语言进行提问时,该模型能够提供关于该图片的一个单词的答案...这个模型将自然语言的问题和图片分别映射为特征向量,将二者合并后训练一个logistic回归层,从一系列可能的回答中挑选一个。

    52820

    卷积神经网络究竟做了什么?

    Github中的obtain-data.sh用来下载数据集,with-keras/train.py用来训练模型并把训练后的权重输出到C++文件中。...模型中的层 每个图层函数都需要一个张量作为输入。训练好的层还需要包含层权重和偏差的张量。 卷积层(Convolution layer) 这里显示了其核心代码,其余部分在convolve函数中实现。...它丢弃了输入传递给它的一部分值,这可以帮助后续层在训练时不会过拟合。 其他 精确性和再现性 训练网络是一个随机的过程。 给定的模型架构可以在单独的训练运行中产生完全不同的结果。...首先,这不是一个高效的层次结构。把零填充和激活函数分开为单独的层意味着需要更多的内存消耗和拷贝操作。...第三,模型的可扩展性很差,如果你要扩展网络,模型实现要修改,单独加载权值的函数也要改。为此,使用支持自动导入和导出模型的库似乎是有意义的。 综上,我们的代码只是一个例子,能够得出结果。

    2.5K80

    Keras作为TensorFlow的简化界面:教程

    Keras层和模型完全兼容纯TensorFlow张量,因此,Keras为TensorFlow提供了一个很好的模型定义附加功能,甚至可以与其他TensorFlow库一起使用。让我们看看这是如何做的。...TensorFlow variable scope对Keras层或模型没有影响。有关Keras权重共享的更多信息,请参阅功能性API指南中的“权重共享”部分。...快速总结Keras中的权重分配的工作原理:通过重用相同的层实例或模型实例,您可以共享其权重。...如果您想要在不同的GPU上训练同一个模型的多个副本,同时在不同的副本上共享相同的权重,则应首先在一个device scope下实例化您的模型(或多个层),然后以不同的方式多次调用相同的模型实例GPU device...任何Keras模型都可以使用TensorFlow服务(只要它只有一个输入和一个输出,这是TF服务的限制)导出,不管它是否作为TensorFlow工作流的一部分进行训练。

    4.1K100

    盘一盘 Python 系列 11 - Keras (中)

    从功能上讲,Keras 将输入和输出类比成张量 (tensor),将函数类比成层 (layer),将输入经过若干层得到输出的流程类比成模型 (model)。结合 Keras 中定义的示意图如下: ?...层函数作用在张量上并返回另一个张量,这两个张量分别称为该层的输入张量和输出张量 构建模型只需将最初的输入张量和最终的输出张量“捆绑”在一起即可 趁热打铁用代码巩固以上知识,首先引入需要的模块,Input...可视化该模型,发现 Team-1-In 和 Team-2-In 共享之前构建好的“团队实力”模型,得出的两组实力值和额外的主客场在“拼接层”中做合并,最后连接一个稠密层。...用锦标赛数据来建立一个做两个预测的模型,输入是两队的种子差异,输出它们得分。注意代码中褐色部分,为什么使用这样的学习率 lr、期数epochs 和批大小 batch_size?...总结:在本贴中我们复习了 Keras 中构建、编译、拟合和评估模型的步骤,并从简单模型开始讲解,到多输入模型 (介绍了嵌入层、共享层、合并层和堆积法等知识点),到多输入模型 (同时做两个回归、同时做回归和分类

    84410

    Keras系列(二) 建模流程

    上周铁柱分享了Keras的优势,本周继续介绍深度学习的核心和建模流程。 神经网络核心 训练神经网络主要围绕以下四个方面:层、数据输入与目标、损失函数、优化器,如图一 ?...图一 层、数据输入、损失函数和优化器之间的关系 从上图可以看出,训练神经网络是一个迭代的过程,输入X经过层的变化后,预测值与真实目标值在损失函数下计算出损失值,再通过优化器重新学习更新权重,经过N...每一层只接受特定形状的输入张量,并返回特定形状的输,将一个或多个输入张量转换为一个或多个输出张量。有些层是无状态的,但大多数的层是有状态的,即层的权重。权重是利用随机梯度下降学到的一个或多个张量。...输入数据和相应的目标 数据数据涉及到数据集的划分、归一化、缺失值处理、特征工程等等。我们需要将数据整理为预定的格式feed给模型,不同的张量格式与不同的数据处理类型需要用到不同的层。...图像数据保存在4D 张量中,通常用二维卷积层(Keras 的Conv2D)来处理。相应的目标可分为分类任务(比如云的分类)和回归任务(比如AQI预测)。

    1.4K20

    TensorFlow 2.0发布在即,高级API变化抢先看

    (也可以使用与此相同的 Keras API 直接在 JavaScript 中开发模型。) 特征列,用于有效地表示和分类结构化数据。 如何安装 tf.keras?...://www.tensorflow.org/tutorials/ Functional API 当然,顺序模型是一个简单的神经网络层堆栈,不能代表任何模型。...不过,你可以使用 Functional API 来构建更高级的模型,定义复杂的拓扑结构,包括多输入和多输出模型,具有共享层的模型以及具有残差连接的模型。...使用 Functional API 构建模型时,神经层是可调用的,并可以返回张量作为输出。然后可以使用这些输入张量和输出张量来定义模型。...如果你发现 tf.keras 限制了你的应用领域,你还有其他选择: 使用独立于 Keras 模型定义的 tf.keras 神经层,并编写自己的梯度和训练代码。

    1K10

    一文详解RNN及股票预测实战(Python)!

    2.2 模型层面及前向传播 如上图,RNN模型(如左侧模型,实际上也只有这一个物理模型),按各个时间步展开后(如右侧模型),可以看作是按时间步(t)串联并共享( )参数的多个全连接神经网络。...另外的,RNN神经元在每个时间步上是共享权重参数矩阵的(不同于CNN是空间上的参数共享),时间维度上的参数共享可以充分利用数据之间的时域关联性,如果我们在每个时间点都有一个单独的参数,不但不能泛化到训练时没有见过序列长度...如下各时间步的前向传播计算流程图,接下来我们会对计算流程逐步分解: 上图展开了两个时间步t-1及t的计算过程; t取值为0~m(序列的长度); x(t)是t时间步的 输入向量; U是 输入层到隐藏层的权重矩阵...,这也说明RNN在不同时刻中是共享参数的。...三、 RNN预测股票 本项目通过创建单层隐藏层的RNN模型,输入前60个交易日(时间步)股票开盘价的时间序列数据,预测下一个(60+1)交易日的股票开盘价。

    1.2K40

    Deep learning with Python 学习笔记(8)

    Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型、在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型。...Keras 回调函数和 TensorBoard 基于浏览器的可视化工具,让你可以在训练过程中监控模型 对于多输入模型、多输出模型和类图模型,只用 Keras 中的 Sequential模型类是无法实现的...这通常利用 Keras 的合并运算来实现,比如 keras.layers.add、keras.layers.concatenate 等 一个多输入模型示例 典型的问答模型有两个输入:一个自然语言描述的问题和一个文本片段后者提供用于回答问题的信息...如果你对一个层实例调用两次,而不是每次调用都实例化一个新层,那么每次调用可以重复使用相同的权重。这样你可以构建具有共享分支的模型,即几个分支全都共享相同的知识并执行相同的运算。...调用一个实例,无论是层实例还是模型实例,都会重复使用这个实例已经学到的表示 在 Keras 中实现连体视觉模型(共享卷积基) from keras import layers from keras import

    68120

    使用Keras进行深度学习:(六)LSTM和双向LSTM讲解及实践

    不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。 先介绍上图中的符号意义: 在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。...举个例子,同样在语言模型中,细胞状态中此时包含很多重要信息,比如:主语为单数形式,时态为过去时态,主语的性别为男性等,此时输入为一个主语,可能需要输出与动词相关的信息,这个时候只需要输出是单数形式和时态为过程...可以看到Forward层和Backward层共同连接着输出层,其中包含了6个共享权值w1-w6。 在Forward层从1时刻到t时刻正向计算一遍,得到并保存每个时刻向前隐含层的输出。...最后在每个时刻结合Forward层和Backward层的相应时刻输出的结果得到最终的输出,用数学表达式如下: 四、Keras实现LSTM和双向LSTM Keras对循环神经网络的支持和封装在上一篇文章已经讲解了...,在这里仅介绍两个模型的搭建,如有疑问请阅读上一篇文章--使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践 (参考资料:https://colah.github.io/posts/2015

    2.1K40
    领券