首页
学习
活动
专区
圈层
工具
发布

利用 Numpy 进行矩阵相关运算

案例讲解 3.1 Numpy.linalg 3.2 Numpy.matlib 1.前言 1.1 基本介绍 NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了...如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。...模块引入以及取别名 1import numpy as np 2import numpy.linalg as linalg 向量或矩阵乘积 ?...SVD分解 这里使用第三十讲奇异值分解习题课的例子 ? 方阵的特征值和特征向量 这里使用第二十一讲习题课的例子 ? (可以发现结果都对特征向量进行了标准化) 特征值 该方法只返回特征值 ?...伪逆 使用第三十四讲习题课的例子,这里要求输入为方阵,因此使用该例子,我们将原矩阵补全为方阵 ? 3.2 numpy.matlib 模块 矩阵类型 ? ? 将其他类型转化为矩阵类型 ?

2.7K30

利用 Numpy 进行矩阵相关运算

案例讲解 3.1 Numpy.linalg 3.2 Numpy.matlib 1.前言 1.1 基本介绍 NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了...如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。...模块引入以及取别名 1import numpy as np 2import numpy.linalg as linalg 向量或矩阵乘积 ?...SVD分解 这里使用第三十讲奇异值分解习题课的例子 ? 方阵的特征值和特征向量 这里使用第二十一讲习题课的例子 ? (可以发现结果都对特征向量进行了标准化) 特征值 该方法只返回特征值 ?...伪逆 使用第三十四讲习题课的例子,这里要求输入为方阵,因此使用该例子,我们将原矩阵补全为方阵 ? 3.2 numpy.matlib 模块 矩阵类型 ? ? 将其他类型转化为矩阵类型 ?

1.6K61
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    讲解from . import _arpack ImportError: DLL load failed

    安装正确版本的SciPy确保您安装了与您当前使用的Python版本兼容的SciPy版本。您可以使用命令 pip freeze 检查已安装的SciPy版本,并根据需要升级或降级SciPy。...了解Python版本兼容性如果您的Python版本与所需的 _arpack DLL 文件不兼容,您可以尝试使用与您的Python版本兼容的其他版本的SciPy。5...._arpack 是 SciPy 库中的一个模块,它提供了一个实现基于稀疏矩阵的特征值计算的算法集合。...它使用了 ARPACK(ARnoldi PACKage)库,该库是用于计算稀疏矩阵特征值和特征向量的一种方法。 具体来说,_arpack 模块提供了用于求解大型、稀疏矩阵的特征值问题的函数。...它的核心算法基于隐式重新启动的反迭代Arnoldi方法,该方法通过迭代计算稀疏矩阵的近似特征值和特征向量。_arpack 的主要函数包括:eigsh: 这个函数用于计算稀疏矩阵的特征值和特征向量。

    78710

    k 阶奇异值分解之图像近似

    这里考虑所有可能,做个对比,找出最快的方法! 综上所述,总共需要考虑 2✖(1+1+1*2+1*2)=12 种可能。...,需要注意的是,该方法不是返回一个图片对象,而是一个图片对象对应的一个或者多个矩阵,因此没有必要使用 np.array 函数,直接把它当成数组就行了。...奇异值分解的实现 接着我们看到奇异值分解的实现,在这里我使用 6 种方法来实现:numpy、scipy、tensorflow(CPU)、tensorflow(GPU)、pytorch(CPU)、pytorch...02 scipy 实现 scipy 实现和 numpy 几乎完全一样,只需要把上面代码的 import numpy as np 后面加上 import scipy.linalg,u, s, vh = np.linalg.svd...对于 tensorflow 和 pytorch 来说,使用 CPU 运行时间比使用 GPU 运行时间短,可能是因为最后转为 numpy 数组的时候需要把数据从 GPU 的显存中复制到内存中花费时间。

    1.3K20

    用python求解特征向量和拉普拉斯矩阵

    学过线性代数和深度学习先关的一定知道特征向量和拉普拉斯矩阵,这两者是很多模型的基础,有着很重要的地位,那用python要怎么实现呢?...numpy和scipy两个库中模块中都提供了线性代数的库linalg,scipy更全面些。...特征值和特征向量 import scipy as sc #返回特征值,按照升序排列,num定义返回的个数 def eignvalues(matrix, num): return sc.linalg.eigh...minValue = eighvalues(matrix, 1) #调用特征向量函数,获取所有的特征向量 vectors = eighvectors(matrix, 3) 拉普拉斯矩阵 很多图模型中都涉及到拉普拉斯矩阵...,它有三种形式,这次给出的代码是D-A(度矩阵-邻接矩阵)和第二种标准化的形式: 微信图片_20220105164255.png #laplacian矩阵 import numpy as np def

    83821

    如何计算特征向量?

    A \) 的一个特征向量,\( \lambda \) 是对应于特征向量 \( v \) 的特征值:在Python中,我们可以使用`numpy`库来计算一个矩阵的特征值和特征向量。...导入`numpy`库。2. 定义或创建你想要计算特征向量的方阵。3. 使用`numpy.linalg.eig`函数计算特征值和特征向量。...可以使用`numpy.linalg.det`函数来计算行列式。2. **使用`numpy.linalg.inv`函数**: 尝试使用`numpy.linalg.inv`函数来计算矩阵的逆。...```在这两个例子中,如果矩阵`A`不可逆(即它是奇异矩阵或退化矩阵),那么:- 使用行列式的方法,`det`将会是0。- 使用逆矩阵的方法,将会抛出`LinAlgError`异常。...通常,使用行列式来检查矩阵是否可逆是更快的方法,因为它不需要实际计算逆矩阵。如果行列式非零,你可以确信矩阵是可逆的,并且如果你需要逆矩阵,可以继续使用`numpy.linalg.inv`来计算它。

    68910

    SciPy库在Anaconda中的配置

    它建立在NumPy库的基础之上,并额外提供其他更高级的功能与工具,涵盖了许多科学分析领域——包括数值积分、优化、插值、信号和图像处理、线性代数、统计分析等。其中,SciPy常用的一些功能如下所示。...NumPy集成:SciPy库扩展了NumPy,提供了更多的数学、科学和工程计算函数和工具。 数值积分:提供了多种数值积分方法,例如梯形法则、辛普森法则和高斯积分法。...scipy.integrate模块包含了这些方法,并提供了用于求解常微分方程的函数。 优化:提供了多种优化算法,用于最小化或最大化函数。...scipy.signal和scipy.ndimage模块包含了这些功能。 线性代数:提供了线性代数运算的函数,例如求解线性方程组、计算特征值和特征向量、计算矩阵的逆等。...在这里,由于我是希望在一个名称为py38的Python虚拟环境中配置SciPy库,因此首先通过如下的代码进入这一环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda创建、使用、删除Python

    83710

    快速傅里叶变换(FFT)算法【详解】

    NumPy 和 SciPy 都有经过充分测试的封装好的FFT库,分别位于子模块 numpy.fft 和 scipy.fftpack 。...我所知的最快的FFT是在 FFTW包中 ,而你也可以在python的pyFFTW 包中使用它。 虽然说了这么远,但还是暂时先将这些库放一边,考虑一下怎样使用原始的python从头开始计算FFT。...还想加快速度的话,一个好的方法是使用Python/ NumPy的工作时,尽可能将重复计算向量化。我们是可以做到的,在计算过程中消除递归,使我们的python FFT更有效率。...向量化的NumPy 注意上面的递归FFT实现,在最底层的递归,我们做了N/32次的矩阵向量乘积。我们的算法会得益于将这些矩阵向量乘积化为一次性计算的矩阵-矩阵乘积。...我们这里的numpy版本涉及到额外的内存的分配和复制,对于如Fortran的一些低级语言就能够很容易的控制和最小化内存的使用。

    5.4K90

    快速傅里叶变换(FFT)算法【详解】

    NumPy 和 SciPy 都有经过充分测试的封装好的FFT库,分别位于子模块 numpy.fft 和 scipy.fftpack 。...我所知的最快的FFT是在 FFTW包中 ,而你也可以在python的pyFFTW 包中使用它。 虽然说了这么远,但还是暂时先将这些库放一边,考虑一下怎样使用原始的python从头开始计算FFT。...看一下上面的DFT表达式,它只是一个直观的线性运算:向量x的矩阵乘法, 矩阵M可以表示为 这么想的话,我们可以简单地利用矩阵乘法计算DFT: 1 import numpy as np 2 def DFT_slow...向量化的NumPy 注意上面的递归FFT实现,在最底层的递归,我们做了N/32次的矩阵向量乘积。我们的算法会得益于将这些矩阵向量乘积化为一次性计算的矩阵-矩阵乘积。...我们这里的numpy版本涉及到额外的内存的分配和复制,对于如Fortran的一些低级语言就能够很容易的控制和最小化内存的使用。

    8.4K40

    【学术】一篇关于机器学习中的稀疏矩阵的介绍

    将这些稀疏矩阵表示为稠密矩阵的问题是对内存的要求,并且必须为矩阵中的每个32位或64位零值做出分配。 这显然是对内存资源的浪费,因为这些零值不包含任何信息。...在Python中稀疏矩阵 SciPy提供了使用多种数据结构创建稀疏矩阵的工具,以及将稠密矩阵转换为稀疏矩阵的工具。...许多在NumPy阵列上运行的线性代数NumPy和SciPy函数可以透明地操作SciPy稀疏数组。...此外,使用NumPy数据结构的机器学习库也可以在SciPy稀疏数组上透明地进行操作,例如用于一般机器学习的scikit-learn和用于深度学习的Keras。...你可能会在数据、数据准备和机器学习的子领域中遇到稀疏矩阵。 有许多有效的方法可以存储和使用稀疏矩阵,而SciPy提供了你可以直接使用的实现。 ?

    4.4K40

    金融量化 - numpy 教程

    另一方面,Python是免费,相比于花费高额的费用使用Matlab,NumPy的出现使Python得到了更多人的青睐 查看 numpy 版本 import numpy numpy.version.full_version...不,NumPy的ndarray类已经做好函数了: 数组元素访问 数组和矩阵元素的访问可通过下标进行,以下均以二维数组(或矩阵)为例: 可以通过下标访问来修改数组元素的值: 现在问题来了,明明改的是a[...想要真正的复制一份a给b,可以使用copy 若对a重新赋值,即将a指到其他地址上,b仍在原来的地址上: 利用:可以访问到某一维的全部数据,例如取矩阵中的指定列: 数组操作 还是拿矩阵(或二维数组)作为例子...,首先来看矩阵转置: 矩阵求逆: 求特征值和特征向量 按列拼接两个向量成一个矩阵: 在循环处理某些数据得到结果后,将结果拼接成一个矩阵是十分有用的,可以通过vstack和hstack完成: 缺失值...NumPy还有很多的函数,想详细了解可参考链接 http://wiki.scipy.org/Numpy_Example_List 和 http://docs.scipy.org/doc/numpy 最后献上

    1.6K40

    Python数学建模算法与应用 - 常用Python命令及程序注解

    这段代码展示了一些使用NumPy库进行矩阵运算的操作,解释如下: 导入NumPy库:import numpy as np 这行代码将NumPy库导入,并使用np作为别名,方便后续使用NumPy函数和方法...计算范数的方法可以通过数学公式进行计算,也可以使用相关的函数或库进行计算,如NumPy中的numpy.linalg.norm函数可以用来计算向量或矩阵的范数。...通常,可以通过指定axis参数来计算行向量或列向量的范数,或者不指定axis参数来计算整个矩阵的范数。 需要注意的是,范数的计算方法和含义会根据具体的范数类型而有所不同。...numpy.linalg.eigh(a, UPLO='L') 计算对称或厄米矩阵a的特征值和特征向量。返回值是一个包含特征值和对应特征向量的元组。...如果不指定axis,则计算输入的整体范数。 numpy.linalg.cond(x, p=None) 计算矩阵x的条件数。条件数是矩阵的一个度量,用于衡量矩阵的可逆性。

    3.7K30

    线性代数之相似矩阵、二次型

    这表明矩阵沿着主对角线是对称的。 性质 特征值:实对称矩阵的所有特征值都是实数。 特征向量:属于不同特征值的特征向量是正交的。此外,每个实对称矩阵都可以被一组标准正交的特征向量所对角化。...运用 代码示例 import numpy as np # 创建一个3x3的对称矩阵 A = np.array([[4, 1, 0], [1, 2, 2],...2、掌握方阵特征值、特征向量的概念、求法。 3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。 4、掌握二次型的概念、会用正交变换化二次型为标准形。...在Python中,可以使用numpy和scipy库来处理矩阵的相似变换和对角化: import numpy as np from scipy.linalg import schur, eig # 创建一个矩阵...在Python中,可以通过以下方式计算二次型的值: import numpy as np # 定义一个对称矩阵A A = np.array([[2, 1], [1, 3]]) # 定义一个向量x x

    1.4K10

    Python+matplotlib使用雷达图技术绘制五角星

    雷达图是一种常用的数据可视化与展示技术,可以把多个维度的信息在同一个图上展示出来,使得各项指标一目了然。本文代码通过绘制五角星演示了polar()函数的用法。 参考代码: ? 运行效果: ?...相关技术文章 Python使用matplotlib.pyplot绘图时设置坐标轴刻度 Python使用matplotlib进行可视化时精确控制图例位置 Python+numpy实现矩阵QR分解 Python...+pyplot绘制带文本标注的柱状图 Python使用matplotlib填充图形指定区域 Python+numpy实现函数向量化 Python使用numpy计算矩阵特征值、特征向量与逆矩阵 Python...使用扩展库numpy计算矩阵加权平均值 Python使用matplotlib绘制三维曲线 Python扩展库scipy.misc中图像转换成pillow图像

    2.1K21

    【实验楼-Python 科学计算】SciPy - 科学计算库(下)

    线性方程组 线性方程组的矩阵形式: Ax=b A是矩阵,xb是向量,代码如下: from scipy.linalg import * from numpy.random import * A = array...使用 eigvals 计算矩阵的特征值,使用 eig 同时计算矩阵的特征值与特征向量: evals = eigvals(A) evals => array([ 1.06633891+0.j...SciPy 对稀疏矩阵有着很好的支持,可以对其进行基本的线性代数运算(比如方程求解,特征值计算等)。 有很多种存储稀疏矩阵的方式。...最优化 最优化 (找到函数的最大值或最小值) 问题是数学中比较大的话题, 复杂的函数与变量的增加会使问题变得更加困难。这里我们只看一些简单的例子。...f(x)=0方程的根,我们可以使用 fsolve。

    1.1K21

    python计算机视觉编程——第一章(基

    1.3 NumPy库 NumPy在线文档 NumPy是Python一个流行的用于科学计算包。它包含了很多诸如矢量、矩阵、图像等其他非常有用的对象和线性代数函数。...我们可以使用 NumPy 类库中的flatten() 方法进行变换。 将变平的图像堆积起来,我们可以得到一个矩阵,矩阵的一行表示一幅图像。在计算主方向之前,所有的行图像按照平均图像进行了中心化。...V,S,mean_X 该函数首先通过减去每一维的均值将数据中心化,然后计算协方差矩阵对应最大特征值的特征向量,此时可以使用简明的技巧或者 SVD 分解。...如果数据个数小于向量的维数,我们不用 SVD 分解,而是计算维数更小的协方差矩阵 XXT 的特征向量。通过仅计算对应前 k(k 是降维后的维数)最大特征值的特征向量,可以使上面的 PCA 操作更快。...如果数据中不包含复杂的数据结构,比如在一幅图像上点击的点列表,NumPy 的读写函数会很有用。

    2.9K10

    主成分分析降维(MNIST数据集)

    主成分分析的原理是什么 前面转坐标轴从理论上考虑,这里主要从数学的角度考虑。 第一个主成分是数据差异最大(方差最大)的方向,第二个主成分是数据差异次大且与第一个主成分正交的方向。...使用np的cov函数计算协方差矩阵,api入下: numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights...相当于matrix(data, copy=False) 详细API请点这里(https://docs.scipy.org/doc/numpy/reference/generated/numpy.mat.html...) linalg.eig(a):计算特征值和特征向量 详细API请点这里(https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html...如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

    1.6K80

    NumPy 1.26 中文官方指南(三)

    使用运算符重载有点不合逻辑:*不逐元素工作,但/却是。 与scipy.sparse的交互更清晰。 因此,更建议使用array。实际上,我们最终打算停用matrix。...:( 使用 scipy.sparse 的稀疏矩阵与数组的交互效果不太好。 矩阵 :\\ 行为更像 MATLAB 矩阵。 矩阵的最大值。...然而,如果这些库可用,NumPy 的设置脚本可以检测到并用于构建。可以使用多种不同的 LAPACK 库设置,包括优化的 LAPACK 库,如 OpenBLAS 或 MKL。...在不转换的情况下操作外部对象 NumPy API 定义的第二组方法允许我们将执行从 NumPy 函数延迟到另一个数组库。 考虑以下函数。...在不转换的情况下操作外部对象 NumPy API 定义的第二组方法允许我们将一个 NumPy 函数的执行延迟到另一个数组库。 考虑以下函数。

    2.8K10

    python学习笔记第三天:python之numpy篇!

    想计算全部元素的和、按行求最大、按列求最大怎么办?for循环吗?不,NumPy的ndarray类已经做好函数了: 算中大量使用到矩阵运算,除了数组,NumPy同时提供了矩阵对象(matrix)。...好办,"linspace"就可以做到: 回到我们的问题,矩阵a和b做矩阵乘法: 五、数组元素访问 数组和矩阵元素的访问可通过下标进行,以下均以二维数组(或矩阵)为例: 可以通过下标访问来修改数组元素的值...下面这个例子是将第一列大于5的元素(10和15)对应的第三列元素(12和17)取出来: 可使用where函数查找特定值在数组中的位置: 六、数组操作 还是拿矩阵(或二维数组)作为例子,首先来看矩阵转置:...矩阵求逆: 求特征值和特征向量: 按列拼接两个向量成一个矩阵: 在循环处理某些数据得到结果后,将结果拼接成一个矩阵是十分有用的,可以通过vstack和hstack完成: 一个水平合一起,一个垂直合一起...NumPy还有很多的函数,想详细了解可参考链接http://wiki.scipy.org/Numpy_Example_List 和 http://docs.scipy.org/doc/numpy 关注一下

    3.3K50
    领券