首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python 科学计算的基石 numpy(一)

多维数组(numpy.ndarray: N-dimensional array) 如果熟悉 matlab (矩阵实验室),就知道 matlab 科学计算建立在“矩阵”之上。...而,numpy 的多维数组有异曲同工之妙。 3.1 创建 3.1.1 使用 np.array() 创建 以下通过一个二维列表创建一个 numpy 多维数组(numpy.ndarray) 。...在 numpy 中,维度这个概念也叫秩 ,英文叫Axes ,因此,这里创建的二维数组,我们也可以称之为秩为 2 的多维数组,它包含了 2 个轴(Axis)。...对,从结构和使用方式上,的确 numpy 多维数组和列表有诸多相似的地方。在大数据分析,机器学习上尤其是深度学习,等需要对大量数据进行计算的场景,它的性能将远超普通列表。...下面计算一个长度为 300,000,000 (3亿)的数组的均值,分布使用列表和 numpy 数组计算。前者用了 15 秒,后者只用不到 2 毫秒。

96510

《python数据分析与挖掘实战》笔记第2章

(1)列表/元组 从功能上看,列表与元组的区别是,列表可以被修改,而元组不可以。...正确的复制方法应该是b==a[:] 表2-1 列表/元组相关的函数 函数 功能 函数 功能 cmp(a,b) 比较两个列表/元组的元素 min(a) 返回列表/元组元素最小值 len(a) 列表/元组元素个数...sum(a) 将列表/元组中的元素求和 max(a) 返回列表/元组元素最大值 sorted(a) 对列表的元素进行升序排序 表2-2列表相关的方法 函 数 功 能 a.append(1) 将1添加到列表...a末尾 a.count(1) 统计列表a中元素1出现的次数 a.extend([1, 2]) 将列表[1, 2]的内容追加到列表a的末尾中 a.index(1) 从列表a中找出第一个1的索引位置 a.insert...a = t | s # t和s的并集 b = t & s #t和s的交集 c = t - s #求差集(项在t中,但不在s中) d = t^s #对称差集(项在t或s中,但不会同时出现在二者中) (4)

1.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数学建模算法与应用 - 常用Python命令及程序注解

    这是因为单位阵在矩阵乘法中起到了类似于数学中的乘法单位元的作用。 第k对角线¶ 在一个n×n的方阵中,第k对角线是指从左上角到右下角的斜线,其上的元素位于主对角线(k=0)上方或下方k个位置。...计算范数的方法可以通过数学公式进行计算,也可以使用相关的函数或库进行计算,如NumPy中的numpy.linalg.norm函数可以用来计算向量或矩阵的范数。...numpy.linalg.eigh(a, UPLO='L') 计算对称或厄米矩阵a的特征值和特征向量。返回值是一个包含特征值和对应特征向量的元组。...在最新版本的Pandas(从0.20.0版本开始),Panel已经不再被推荐使用,并且在将来的版本中可能会被弃用。...Python编写,使用pandas和pylab库从Excel文件中读取数据并创建条形图。

    1.5K30

    Python 全栈 191 问(附答案)

    列表如何反转? 如何找出列表中的所有重复元素? 如何使用列表创建出斐波那契数列?使用 yield 又怎么创建 ?...Python 中如何创建线程,以及多线程中的资源竞争及暴露出的问题 多线程鸡肋和高效的协程机制的相关案例 列表和迭代器有何区别? 如何拼接多个迭代器,形成一个更大的可迭代对象?...NumPy 的灵魂:shape 与 reshape,提供直观的 6 幅图理解,其中一幅: 线性代数中,矩阵的乘法操作在 NumPy 中怎么实现?...求两个特征的相关系数 如何找出 NumPy 中的缺失值、以及缺失值的默认填充 Pandas 的 read_csv 30 个常用参数总结,从基本参数、通用解析参数、空值处理、时间处理、分块读入、格式和压缩等...;线条颜色;线型;标题;x、y轴 label;文本;注解;显示中文;双 data;legend;网格;数据范围;x 轴日期格式自适应;双轴;双图或多图排布;嵌入图 Pyecharts 快速入门第 1例

    4.2K20

    Python那些熟悉又陌生的函数,每次看别人用得很溜,自己却不行?

    一行代码创建列表 每次需要定义某种列表时都要编写一个for循环,这是一件乏味的事情,幸运的是Python有一种内置的方法可以在一行代码中解决这个问题。...for循环进行列表理解,以及如何使用一行简单的代码创建列表,而不需要使用循环。...# np.linspace(start, stop, num) np.linspace(2.0, 3.0, num=5) Axis真正含义是什么 当您在pandas中删除一列或在NumPy矩阵中添加值时...我最喜欢的理由,或者至少我是怎么记得的: df.shape (# of Rows, # of Columns) 从pandas dataframe调用shape属性将返回一个tuple,其中第一个值表示行数...zip函数 zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

    1.3K10

    Numpy库

    可以通过以下几种方式创建ndarray: 从其他Python结构转换:例如列表和元组。...dtype:数据类型,NumPy支持多种数据类型。 数组索引与切片 NumPy支持对数组进行索引和切片操作,可以方便地访问和修改数组中的特定部分: 一维数组索引:使用正整数或负整数进行索引。...在NumPy中实现矩阵分解算法,可以使用多种不同的方法。...NumPy与pandas库的集成使用有哪些最佳实践? NumPy与Pandas是Python数据科学中非常重要的两个库,它们在处理大规模数据集时具有高效性和易用性。...以下是一些最佳实践,帮助你更好地集成和使用这两个库: 理解NumPy和Pandas的关系: Pandas是基于NumPy构建的,因此大部分Pandas操作都依赖于NumPy进行数值计算。

    9510

    Python数据分析常用模块的介绍与使用

    size:输出结果的维度大小。可以是整数,元组或None。如果是整数,则生成的随机整数是一维的;如果是元组,则生成的随机整数是多维的。 dtype:输出结果的数据类型。默认为'l',即整数类型。...,由最后一位参数是元组还是列表决定 关于rand 在Python的NumPy库中,rand函数用于生成指定形状的随机数数组,这些随机数是从[0, 1)的均匀分布中随机抽取得到的。...Series Series是Pandas中的一种数据结构,类似于一维的数组或列表。它由两个部分组成:索引和数据值。索引是Series中数据的标签,它可以是整数、字符串或其他数据类型。...数据值是存储在Series中的实际数据。 Series可以通过多种方式创建,包括从列表、数组、字典和标量值创建。...下面是一些常见的Series操作和特性: 访问Series的元素:可以使用索引来访问Series中的元素,类似于访问列表的方式。例如,series[0]将返回Series中第一个元素的值。

    32010

    灰太狼的数据世界(一)

    为什么要用NumPy数组结构而不是Python本身的列表list? 这是因为列表list的元素在系统内存中是分散存储的,而NumPy数组存储在一个均匀连续的内存块中。...在numpy里面是有一个叫ndarray这样一个神奇的东西的,这个东西的本质其实就是一个矩阵(其实就是一个嵌套列表),如果你上过高中,那么对矩阵就会有一定的了解,一般我们高中学的就是2*2的矩阵。...order=None, subok=False, ndmin=0) 快速创建一个2*2的矩阵可以直接传入一个嵌套列表即可: import numpy as np a...排序 排序是算法中使用频率最高的一种,在我们进行数据分析的时候经常会使用,在numpy里面就是简单的一句话: x = np.array([1, 8, 3, 5, 7]) SORT = np.sort...我们使用numpy一些主要的方法以及跟你以上基本都覆盖到了,其实本质也就是对列表的一些操作,只不过在numpy里面的列表可能更加的多维度。

    99430

    解决FutureWarning: Using a non-tuple sequence for multidimensional indexing is dep

    这个警告是因为未来的版本中,将不再支持使用非元组序列进行多维数组索引。为了解决这个问题,我们需要修改索引的方式。问题原因这个警告是由于在实现索引时使用了非元组的序列,即使用列表或数组来进行索引。...在未来的版本中,将不再支持使用这种方式,而是要求使用元组的方式来进行多维数组的索引。解决方法为了解决这个问题,我们需要修改代码,将非元组的序列转换为元组。...在NumPy或者Pandas中,我们可以使用列表或数组来进行索引操作。这意味着我们可以通过传递一个包含索引值的列表或数组来提取多维数组中的特定元素或子数组。...使用列表或数组进行索引的的主要应用场景是从多维数组中选择特定的行、列或元素,或者提取特定的子数组。下面是一个示例代码来详细介绍如何使用列表或数组进行索引。...pythonCopy codeimport numpy as np# 创建一个3x3的二维数组arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 使用列表进行行索引

    39730

    最全攻略:数据分析师必备Python编程基础知识

    5//2 #除法(整除) 2 5%2 #余数 1 Python可以处理双精度浮点数,可以满足绝大部分数据分析的需求,要精确空值数字精度,还可以使用numpy扩展库。...元组(tuple) 元组与列表类似,区别在于在列表中,任意元素可以通过索引进行修改。而元组中,元素不可更改,只能读取。下面展示了元组和列表的区别,列表可以进行赋值,而同样的操作应用于元组则报错。...集合(set) Python中,集合(set)是一组key的集合,其中key不能重复。可以通过列表、字典或字符串等创建集合,或通过“{}”符号进行创建。...05 pandas 读取结构化数据 Numpy中的多维数组、矩阵等对象具备极高的执行效率,但是在商业数据分析中,我们不仅需要一堆数据,还需要了解各行、列的意义,同时会有针对结构化数据的相关计算,这些是Numpy...-8',python2默认为'ascii' ▲表3-3 pandas.read_csv参数一览 Pandas除了可以直接读取csv、Excel、Json、html等文件生成DataFrame,也可以从列表

    4.6K21

    NumPy 使用教程

    介绍  在 python 内建对象中,数组有三种形式:  list 列表:[1, 2, 3]Tuple 元组:(1, 2, 3, 4, 5)Dict 字典:{A:1, B:2} 其中,元组与列表相似,...在 NumPy 中,我们主要通过以下 5 种途径创建数组,它们分别是:  从 Python 数组结构列表,元组等转换。...使用 np.arange、np.ones、np.zeros 等 NumPy 原生方法。从存储空间读取数组。通过使用字符串或缓冲区从原始字节创建数组。使用特殊函数,如 random。...3.2 从列表或元组转换  在 NumPy 中,我们使用 numpy.array 将列表或元组转换为 ndarray 数组。...2.2 双曲函数  在数学中,双曲函数是一类与常见的三角函数类似的函数。双曲函数经常出现于某些重要的线性微分方程的解中,使用 numpy 计算它们的方法为:  numpy.sinh(x):双曲正弦。

    2.5K20

    python数据分析——Python数据分析模块

    一、Numpy模块 Numpy模块是python语言的一个扩展程序库,支持大量的多维数组与矩阵计算,此外也针对数组运算提供大量的数学函数库。...使用numpy模块中的arange方法可以生成给定范围内的数组,其中的参数start表示起始数,stop表示终止数,step表示步长,即数组中相邻两个数字的差, dtype用于制定数据类型。...; 使用np. eyes (m, n)方法生成m行,n列的对角线位置填充为1的矩阵; 使用random方法生成随机数组。...10到22之间,是3*2的元组,是元组还是列表,由最后一位参数是元组还是列表决定 关于rand np.random.rand(2) np.random.rand(2, 3) 1.2Numpy数组统计方法...创建DataFrame的语句如下: index和columes参数可以指定,当不指定时,从0开始。通常情况下,列索引都会给定,这样每一列数据的属性可以由列索引描述。

    26310

    【知识】使用Python来学习数据科学的完整教程

    我们知道数据结构、迭代和条件结构构成任何语言的关键。 在Python中,这些包括列表,字符串,元组,字典,for循环,while循环,if-else等。我们来看看其中的一些。...下面是一个快速定义一个列表然后访问它的例子: ? Strings – 字符串可以简单地通过使用单个(’),双(“)或三个(’’’)的逗号来定义。...由于元组是不可变的,不能改变,与列表相比,它的处理速度更快。 因此,如果你的列表不太可能更改,应该使用元组,而不是列表。...它有一个简单的语法: for i in [Python Iterable]: expression(i) 这里“Python Iterable”可以是列表,元组或其他高级数据结构,我们将在后面的部分中讨论...现在我们将使用pandas从Analytics Vidhya比赛中读取数据集,进行探索性分析,并构建我们的第一个基础分类算法来解决这个问题。

    1.7K70

    NumPy 1.26 中文官方指南(二)

    对于一个有四列的数组,你将得到四个值作为你的结果。 阅读更多关于 数组方法的内容。 创建矩阵 你可以传递 Python 的列表列表来创建一个 2-D 数组(或“矩阵”)以在 NumPy 中表示它们。...如果对 NumPy 不熟悉,可以从数组的值中创建一个 Pandas 数据框,然后使用 Pandas 将数据框写入 CSV 文件。...我们可以从 Python 列表中初始化 NumPy 数组的一种方式是使用嵌套列表进行二维或多维数据。...阅读更多关于数组方法的信息。 创建矩阵 你可以传递 Python 的列表列表来创建一个代表它们的 2-D 数组(或“矩阵”)在 NumPy 中表示。...如果您是 NumPy 的新手,您可能希望从数组的值中创建一个 Pandas 数据帧,然后用 Pandas 将数据帧写入 CSV 文件。

    35410

    NumPy基础

    >一书非常注重实践,对每个算法的实现和使用示例都提供了python实现。在阅读代码的过程中,发现对NumPy有一定的了解有助于理解代码。...特别是NumPy中的数组和矩阵,对于初次使用者而言,有点难以理解。下面就总结一下NumPy基础知识。...NumpPy包含两种基本的数据类型:数组和矩阵,二者在处理上稍有不同。 NumPy数组 NumPy数据处理 与标准的python不同,使用NumPy处理数组中的数据可以省去循环语句。...> jj[0][1] 2 也可以用矩阵方式访问: >>> jj[0, 1] 2 创建数组 我们可以从列表,通过np.array()函数创建数组,然后利用方括号访问其中的元素,array()函数还可以增加一个可选的参数...在>中还使用到了np.tile函数,其定义如下: numpy.tile(A, reps) 重复reps次A,形成一个数组。这里reps可以是数字,也可以是元组。

    55220

    创建DataFrame:10种方式任你选!

    --MORE--> 扩展阅读 1、Pandas开篇之作:Pandas中使用爆炸函数 2、Pandas系列第一篇:Series类型数据创建 导入库 pandas和numpy建议通过anaconda安装后使用...元组创建的方式和列表比较类似:可以是单层元组,也可以进行嵌套。...数组创建 1、使用numpy中的函数进行创建 # 1、使用numpy生成的数组 data1 = { "one":np.arange(4,10), # 产生6个数据 "two":range...numpy中的随机函数 # 3、numpy中的随机函数生成 # 创建姓名、学科、学期、班级4个列表 name_list = ["小明","小红","小孙","小周","小张"] subject_list...from_records pandas中还有另一个支持元组列表或结构数据类型(dtype)的多维数组的构建器:from_records data3 = [{'身高': 173, '姓名': '张三','

    4.7K30

    使用Python NumPy库进行高效数值计算

    数组的创建与基本操作 创建数组 使用NumPy创建数组是非常简单的,可以通过将普通的Python列表或元组传递给numpy.array函数来实现。...下面是一个简单的例子: pythonCopy codeimport numpy as np # 从列表创建数组 arr_list = [1, 2, 3, 4, 5] arr_from_list = np.array...(arr_list) print("数组从列表创建:", arr_from_list) # 从元组创建数组 arr_tuple = (1, 2, 3, 4, 5) arr_from_tuple = np.array...(arr_tuple) print("数组从元组创建:", arr_from_tuple) 数组属性 创建数组后,可以通过访问数组的各种属性来获取有关数组的信息,如形状、维度和元素个数等。...的集成 NumPy和Pandas是Python中数据科学领域的两个核心库,它们可以很好地结合使用。

    2.5K21

    利用Python进行数据分析笔记

    在shell中使用pandas和NumPy也很容易。 但是,当创建软件时,一些用户可能更想使用特点更为丰富的IDE,而不仅仅是原始的Emacs或Vim的文本编辑器。...接下来,简单地介绍了NumPy的关键特性,附录A中是更高级的NumPy功能。然后,我介绍了pandas,本书剩余的内容全部是使用pandas、NumPy和matplotlib处理数据分析的问题。...虽然扩展库,比如pandas和Numpy,使处理大数据集很方便,但它们是和Python的内置数据处理工具一同使用的。 我们会从Python最基础的数据结构开始:元组、列表、字典和集合。...它们可以让你用类似NumPy的标记,使用轴标签(loc)或整数索引(iloc),从DataFrame选择行和列的子集。...后面的频率值是每个列中这些值的相应计数。 5.4 总结 在下一章,我们将讨论用pandas读取(或加载)和写入数据集的工具。

    5.2K10
    领券