首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从2050回顾2020,职业规划与技术路径(节选)补充

    文明的提升,源于机械/能源/信息/智能四大模式的转变。机械将自然力或人力更高效利用,如风车,能源以蒸汽机为代表开启工业革命,信息启动了互联网时代,智能将实现虚拟社区的主导模式。智能设备需以量子计算为基础,目前并没有所谓成熟的智能设备。自动驾驶技术/大数据推荐系统等都属于信息自动化范畴,在人力干预或者算法规则下实现控制和优化。智能是完成从无到有,比如问题自我解决的过程,可以理解为一种智能。智能时代现实和虚拟的占比将实现突破,虚拟世界成为主导,现实不再重要。举例说明,智能量子计算机可以依据客户需求自主编写剧本拍摄数字电影,不同的观众看同一电影时,剧情和结局会依据个性动态调整。量子计算机是实现智联网的关键,量子机器人是实现移动智联网的关键。现有技术网络上传输的信息是不变的,智联网时代网络上传输的信息是动态的,端端之间是活的信息。

    03

    刘韵洁:人工智能将引发未来网络产业变革

    刘韵洁 中国工程院院士,江苏省未来网络创新研究院院长,北京邮电大学信息与通信工程学院院长,中国联通科技委主任。通信与信息系统专家,主要研究领域为信息化网络的建设发展、三网融合、未来网络与人工智能的研究等。 互联网发展到现在经历了四十多年的历程,在商业消费领域取得了巨大的成功。当前互联网应用正在从消费领域向生产领域扩展,与工业、能源等实体经济领域深度融合,这对网络通信的实时性、安全可靠、服务等级划分、海量数据处理和资源调度提出了更高的需求,网络可持续发展已逐渐成为全球关注的焦点。为满足互联网业务模式的根本性转

    012

    自动驾驶安全挑战:行为决策与运动规划

    在自动驾驶技术发展中,安全性一直作为首要因素被业界重视。行为决策与运动规划系统作为该技术的关键环节,对智慧属性具有更高要求,需要不断地随着环境变化做出当前的最优策略与行为,确保车辆行驶过程中的安全,文中分别对行为决策和运动规划系统进行深层次阐述。首先,介绍行为决策中基于规则的决策算法、基于监督学习的决策算法、基于强化学习的决策算法的算法理论及其在实车中的应用,然后,介绍运动规划中基于采样的规划算法、基于图搜索的规划算法、基于数值优化的规划算法和基于交互性的规划算法,并对算法的设计展开讨论,从安全角度分析行为决策和运动规划,对比各类方法的优缺点。最后,展望自动驾驶领域未来的安全研究方向及挑战。

    04

    基于目标导向行为和空间拓扑记忆的视觉导航方法

    动物,包括人类在内,在空间认知和行动规划方面具有非凡的能力,与其对应的导航行为也在心理学和神经科学中得到广泛研究.1948年, Tolman提出“认知地图(cognitivemap)”概念用于说明物理环境的内在表达,自此,认知地图的存在和形式一直饱受争议.近年来,通过将电极放置在啮齿类动物脑中及研究其电生理记录,位置细胞(placecells),网格细胞(gridcells)和头朝向细胞(Head-Directioncells,HDcells)等多种有关环境编码的细胞得以被人们熟知.在空间认知过程中,每种细胞有其特定功能,它们相互合作完成对状态空间的表达,各类细胞连接如图1所示。此外,还有证据表明海马体内嗅皮层脑区不仅参与空间记忆, 在规划路径中也具有重要作用。

    03

    基于蚁群算法的机械臂打孔路径规划

    问题描述   该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。 数学模型建立 问题分析   机械臂打孔生产效能主要取决于以下三个方面: 单个孔的钻孔作业时间,这是由生产工艺所决定的,不在优化范围内,本文假定对于同一孔型钻孔的作业时间是相同的。 打孔机在加工作业时,钻头的行进时间。 针对不同孔型加工作业时间,刀具的转换时间。   在机

    08

    每日论文速递 | Next Token Prediction 陷阱

    摘要:单纯的下一个next-token predictor能否真正地模拟人类智能?我们将这一文献中支离破碎的直观问题具体化。作为出发点,我们认为必须区别对待下一个标记预测中两个经常被混淆的阶段--自回归推理和教师强迫训练。流行的批评认为,在自回归推理过程中错误可能会加剧,而这一批评的关键在于假设教师强制训练已经学会了准确的下一个标记预测器。这一假设回避了我们所揭示的一个更深层次的问题:在某些任务中,教师强制可能根本无法学习到准确的下一个标记预测器。我们描述了teacher-forcing fail的一般机制,并设计了一个最小规划任务,在这个任务中,Transformer 和 Mamba 架构都以这种方式失败了--令人惊讶的是,尽管这个任务是简单易学的。我们提供的初步证据表明,在训练提前预测多个标记时,这种失败是可以解决的。我们希望这一发现能为未来的争论提供依据,并激发对下一个标记预测范式之外的探索。

    01

    学界 | 价值传播网络,在更复杂的动态环境中进行规划的方法

    规划是许多领域人工智能体的关键组成部分。然而,经典规划算法的局限性在于,对于每种可能的规划实例,人们都需要知道如何为其搜索最优(或至少合理的)方案。环境动态和状态复杂度的增加给规划的写作人员制造了困难,甚至使其完全不切实际。「学习做规划」旨在解决这些问题,这也就是为什么「学习做规划」一直是活跃研究领域的原因之一 [Russell et al., 1995, Kaelbling et al., 1996]。出于实用性考虑,我们提出,学习规划者的方法应该有至少两个属性:算法的轨迹应是自由的,即不需要最优规划者的轨迹;算法应该可以泛化,即学习规划者应该能解决同类型但未曾遇到的实例和/或规划期。

    01

    滴滴研究院副院长叶杰平:深度学习在交通领域应用潜力巨大【北大AI公开课第9讲】

    【新智元导读】 在北大 AI 公开课第9讲上,滴滴出行副总裁、滴滴出行研究院院长叶杰平老师,和北大人工智能创新中心主任、曾经的“百度七剑客”之一雷鸣老师一道,为同学们全面讲解了大数据和人工智能在滴滴出行场景中的应用,智能派单、最优匹配、供需预测等背后的核心技术,以及人工智能如何推动交通行业升级和未来的发展趋势与展望。叶杰平老师指出,深度学习在交通领域的应用探索才刚刚起步,前景广阔。 自开课以来受到学生热捧的北大 AI 公开课来到了第 9 讲,这次和北大人工智能创新中心主任、曾经的“百度七剑客”之一雷鸣老师共

    06
    领券