作者:腾讯云云函数团队产品经理April 导语|本文演示了如何捕获流计算 Oceanus (Flink) 集群状态变更,并通过事件总线(EventBridge)发送到企业微信或钉钉、飞书客户端。 背景介绍 监控与报警系统对于业务生产环境来说是不可或缺的,一旦有故障发生,需要有完善的监控告警链路,保证告警消息可以实时完成推送并进行处理。 腾讯云事件总线(EventBridge)[1] 简称 EB,是一款安全、稳定、高效的无服务器事件管理平台。事件中心的事件总线可以接收来自您自己的应用程序、软件即服务(Sa
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本示例使用流计算 Oceanus 平台的 ETL 功能,将 PostgreSQL 数据取出,经过时间转换函数处理后存入 PostgreSQL 中。用户无需编写
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十四、union函数》cosmozhu写的本系列文章的第十四篇。通过简单的DEMO来演示union函数执行的效果 。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:六、reduce函数》是cosmozhu写的本系列文章的第六篇。通过简单的DEMO来演示reduce函数执行的效果 。
实时流计算服务(Cloud Stream Service,简称CS),是运行在公有云上的实时流式大数据分析服务,全托管的方式用户无需感知计算集群,只需聚焦于Stream SQL业务,即时执行作业,完全兼容Apache Flink(1.5.3版本)API和Apache Spark(2.2.1版本)API。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十二、apply函数》cosmozhu写的本系列文章的第十二篇。通过简单的DEMO来演示apply函数执行的效果 。
本文演示了如何捕获流计算 Oceanus (Flink) 集群状态变更,并通过事件总线(EventBridge)发送到企业微信或钉钉、飞书客户端。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:七、fold函数》是cosmozhu写的本系列文章的第七篇。通过简单的DEMO来演示fold函数执行的效果 。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:五、keyBy、sum、print函数》是cosmozhu写的本系列文章的第五篇。通过简单的DEMO来演示keyBy、sum、print函数执行的效果 。
flink join,Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十五、join函数》cosmozhu写的本系列文章的第十五篇。通过简单的DEMO来演示join函数执行的效果 。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十、count-window-tumbling》cosmozhu写的本系列文章的第十篇。通过简单的DEMO来演示time-window-tumbling时间窗口函数执行的效果 。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:八、time-window-tumbling窗口函数》是cosmozhu写的本系列文章的第八篇。通过简单的DEMO来演示window-tumbling窗口函数执行的效果 。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何使用 Datagen Connector 模拟生成客户视频点击量数据,并利用滚动窗口函数对每分钟内客户的视频点击量进行聚合分析,最后将
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:九、time-window-sliding》cosmozhu写的本系列文章的第九篇。通过简单的DEMO来演示time-window-Sliding时间窗口函数执行的效果 。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十一、count-window-Sliding》cosmozhu写的本系列文章的第十一篇。通过简单的DEMO来演示count-window-Sliding时间窗口函数执行的效果 。
首先我们需要需要了解的一个概念是Apache Flink支持处理流式计算(stream)和批量计算(batch),但是在目前版本中这两种计算方式各自拥有自己独立的API,本系列文章只讨论流式计算(stream)。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将向您详细介绍如何获取 PostgreSQL 表数据,并使用字符串函数进行转换,最后将数据输出到 ClickHouse 中。 前置准备 创建流计算 Oc
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将您详细介绍如何利用 Python 脚本发送模拟数据到 CKafka 中,之后取 CKakfa 的数据经过简单的算术函数转换存入到 PostgreSQL
一、流计算 Oceanus 限量秒杀专享活动 二、什么是ETL ETL(Extract,Transform,Load)描述了将数据从源端经过抽取、转换、加载至目的端的过程。 企业收集到的原始数据通常存在数据缺失、数据结构混乱等问题,难以直接用来分析或计算。通过补充缺失的数值、修正偏差的数值、拆分字段、转换类型以及使用用户自定义函数等方式,ETL 能够将数据加工为规整、可用的形式。使用腾讯云流计算 Oceanus 开发 ETL 作业时,用户只需选择数据源表和目的表,并根据业务逻辑完成字段映射的配置,即可
在本篇文章中我们接着来说filter函数,此函数主要作用就是根据用户条件,过滤数据流中数据。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 Flink Jar 作业既支持使用 DataStream API 编程也支持使用 Table API/SQL 编程, Table API 和 SQL 也
在上一篇文章Flink-1.9流计算开发:二、Map函数文章中我们使用了map方法。在本篇文章中我们将使用flatMap,来验证一下它与map方法的差异。
在Spark框架当中,提起流计算,那么主要就是Spark Streaming组件来负责。在大数据的发展历程当中,流计算正在成为越来越受到重视的趋势,而Spark Streaming流计算也在基于实际需求不断调整。今天的大数据学习分享,我们就主要来讲讲Spark 实时流计算。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何实时获取 CKafka 中的 JSON 格式数据,经过数据抽取、平铺转换后存入 MySQL 中。 前置准备 创建流计算 Oceanus
整体来讲一个流处理过程可以划分为三部分DataSource、Transformations、Sinks。DataSource用来产生或者获取数据流,Transformations对数据流做转换,Sinks作为数据的出口输出到将数据输出到数据库,文件等系统,不过Transformations、Sinks并不是必须的。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何使用 MySQL 接入数据,经过流计算 Oceanus 对数据进行处理分析(示例中采用小写转换函数对name字段进行了小写转换),最终将处
静态数据:为了支持决策分析而构建的数据仓库系统,其中存放的大量历史数据就是静态数据。
状态管理是流计算系统的核心问题之一。在实现流数据的关联操作时,流计算系统需要先将窗口内的数据临时保存起来,然后在窗口结束时,再对窗口内的数据做关联计算。在实现时间维度聚合特征计算和关联图谱特征计算时,更是需要创建大量的寄存用于记录聚合的结果。而CEP的实现,本身就与常说的有限状态机(Finite-state machine,FSM)是密切相关的。不管是为了关联计算而临时保存的数据,还是为了保存聚合计算的数据,抑或是CEP里的有限状态机,这些数据都是流计算应用开始运行之后才创建和积累起来。如果没有做持久化操作,这些数据在流计算应用重启后会被完全清空。正因为如此,我们将这些数据称之为流计算应用的“状态”。从各种开源流计算框架的发展历史来看,大家对实时流计算中的“状态”问题也是一点点逐步弄清楚的。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何使用自定义聚合函数(UDAF),将处理后的存入 MySQL 中。 前置准备 创建流计算 Oceanus 集群 进入 Oceanus 控
流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。
在上篇,我们一起学习了分布式计算中的 MapReduce 模式(分布式计算技术MapReduce 详细解读),MapReduce 核心思想是,分治法,即将大任务拆分成多个小任务,然后每个小任务各自计算,最后合并各个小任务结果得到开始的那个大任务的结果。
在流式计算越来越受到主流青睐的市场状况下,流式计算框架技术的掌握,正在成为大数据学习当中的重要部分。以Flink框架来说,作为新一代的流计算框架,越来越多地出现在大数据开发者们的技能树当中。今天的大数据入门分享,我们就来讲讲FLink的几个核心概念。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将您详细介绍如何使用自定义标量函数(UDF),对随机产生的数据进行处理后存入 MySQL 中。 前置准备 创建流计算 Oceanus 集群 进入 Ocea
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何使用自定义表值函数(UDTF),并将处理后的数据存入 MySQL 中。 前置准备 创建流计算 Oceanus 集群 进入 Oceanus
1、Apache Flink 在滴滴的背景 2、Apache Flink 在滴滴的平台化 3、Apache Flink 在滴滴的生产实践 4、Stream SQL 5、展望规划
AI 前线导读:2018 年接近尾声,AI 前线策划了“解读 2018”年终技术盘点系列文章,希望能够给读者清晰地梳理出重要技术领域在这一年来的发展和变化。本文是实时流计算 2018 年终盘点,作者对实时流计算技术的发展现状进行了深入剖析,并对当前大火的各个主流实时流计算框架做了全面、客观的对比,同时对未来流计算可能的发展方向进行预测和展望。
流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文首先介绍了几种最常见、最基础的错误,用户在使用的时候可以尽量规避的问题。接下来介绍了流计算 Oceanus 平台的监控系统,可以帮助用户实时了解作业各个层级的明细及运行状态。然后借助于日志系统帮助诊
Data Artisans Streaming Ledger,在data Artisans的River Edition上已经可用,提供串行化(一致性事务处理机制的最高级别)的ACID的语义,作为一个依赖库来处理事件流上多个共享的状态/表。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将会介绍如何使用 Flink 实现常见的 TopN 统计需求。首先使用 Python 脚本模拟生成商品购买数据(每秒钟发送一条)并发送到 CKafka,随后
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何实时获取 CKafka 中的 JSON 格式数据,经过 HOP WINDOW(滑动窗口)函数聚合分析后存入 ClickHouse 中。 前
随着移动设备、物联网设备的持续增长,流式数据呈现了爆发式增长,同时,越来越多的业务场景对数据处理的实时性有了更高的要求,基于离线批量计算的数据处理平台已经无法满足海量数据的实时处理需求,在这个背景下,各种实时流处理平台应运而生。
作者:吴云涛,腾讯 CSIG 高级工程师 一个监控系统对于每一个服务和应用基本上都是必不可少的。在 Flink 源码中监控相关功能主要在 flink-metrics 模块中,用于对 Flink 应用进行性能度量。Flink 监控模块使用的是当前比较流行的 metrics-core 库,来自 Coda Hale 的 dropwizard/metrics [1]。dropwizard/metrics 不仅仅在 Flink 项目中使用到,Kafka、Spark 等项目也是用的这个库。Metrics 包含监控的指标
本次实验数据为:ASTER GDEM V3数据,是由美国NASA、日本METI、及日本航天局共同研制与发布的。其数据覆盖范围达到了地球陆地表面99%的区域,空间分辨率为30m。本次实验数据范围是我国海南省区域;是我们上一期完成填洼操作,并按照矢量数据范围裁剪后的DEM数据。
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将为您详细介绍如何使用 Windowing TVF 配合聚合函数,实时调整乱序数据,经过聚合分析后存入 MySQL 中。 前置准备 创建流计算 Oceanu
领取专属 10元无门槛券
手把手带您无忧上云