首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

波克图不显示在QWebView中

可能是由于以下几个原因导致的:

  1. 图片路径错误:请确保波克图的路径是正确的,并且可以在QWebView中访问到。可以尝试使用绝对路径或相对路径来指定图片的位置。
  2. 图片格式不受支持:QWebView支持常见的图片格式,如JPEG、PNG等。如果波克图的格式不受支持,可能无法在QWebView中显示。可以尝试将波克图转换为支持的格式。
  3. 缺少必要的依赖库:QWebView可能需要一些额外的依赖库来正确显示图片。请确保系统中已经安装了这些依赖库,并且与QWebView兼容。
  4. JavaScript禁用:如果波克图的显示需要使用JavaScript来操作,而QWebView中禁用了JavaScript,那么波克图可能无法显示。请确保JavaScript在QWebView中是启用的。

如果以上方法都无法解决问题,可以尝试以下步骤来进一步排查:

  1. 检查网络连接:确保网络连接正常,波克图所在的服务器可以正常访问。
  2. 检查HTML代码:检查在QWebView中加载波克图的HTML代码是否正确,没有语法错误或其他问题。
  3. 调试工具:使用QWebView提供的调试工具来查看是否有任何错误或警告信息。可以通过查看控制台输出或日志文件来获取更多信息。

总结起来,要解决波克图不显示在QWebView中的问题,需要确保图片路径正确、图片格式受支持、依赖库已安装、JavaScript启用,并进行逐步排查可能的问题。如果问题仍然存在,可以考虑寻求更专业的技术支持或咨询相关论坛社区。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 科学家意外记录人类“濒死脑电波”,死前30秒与做梦回忆过程高度相似,马斯克也下场围观

    鱼羊 萧箫 发自 凹非寺 量子位 | 公众号 QbitAI 死亡的一瞬间,人类大脑在想些什么? 现在,这一幕被科学家们完整“拍”到了。 最新研究显示,一份人类死亡前后900秒的连续脑电图记录,在一台抢救癫痫病人的手术中被留存了下来。 科学家们在其中惊奇地发现,与此前“濒死阶段大脑功能减退”的经典观点不同,濒死阶段的人脑甚至出现了活动增强的情况。 并且,这些大脑活动与人类在回忆和做梦时的脑部活动非常相似。 记录脑电图的神经外科医生Ajmal Zemmar推测: 死亡一瞬间,大脑可能真的会播放人生跑马灯! 这

    03

    大脑活动的自主模式:自主和中枢神经系统的相互作用

    自主神经系统和中枢神经系统之间的相互作用对人类大脑功能和健康的相关性尚不清楚,特别是当这两个系统在睡眠剥夺(SD)下受到挑战时。我们测量了健康参与者的大脑活动(用功能磁共振成像)、脉搏和呼吸信号以及基线脑淀粉样蛋白β负荷(用PET)。我们发现,相对于休息清醒(RW), SD导致同步低频(LF, <0.1 Hz)在自主相关网络(AN)中的活动,包括背侧注意、视觉和感觉运动区域显著增加,我们之前发现这些区域与LF脉冲信号变化具有一致的时间耦合(由交感神经张力调节)。SD导致脉冲信号的LF成分与中脑网状结构中具有峰值效应的内侧网络之间,以及呼吸变化(由呼吸运动输出调节)的LF成分与小脑网络之间存在显著的相位一致性。SD期间AN的LF功率与脉中网和呼吸-小脑网络相位相干性独立且显著相关。SD期间AN的高LF功率(而非RW)与较低的β淀粉样蛋白负荷相关。总之,SD触发了同步大脑活动的自主模式,这种模式与不同的自主中枢相互作用有关。研究结果强调了整体皮质同步与大脑清除机制的直接相关性。

    01

    重度抑郁症患者的非快速眼动睡眠

    睡眠紊乱是重度抑郁症(MDD)的一个关键症状。目前的文献对快速眼动(REM)睡眠的改变进行了很好的描述,但对非快速眼动(non-REM)睡眠的改变却知之甚少。此外,睡眠障碍与MDD的各种认知症状有关,但non-REM睡眠EEG的哪些特征导致了这一点目前尚不清楚。我们综合分析了三个独立收集的数据集(216名被试的N = 284个数据,)中两个中央通道的non-REM睡眠EEG特征。这项探索性和描述性的研究纳入了年龄范围广泛、抑郁症持续时间和严重程度不同、用药或未用药、以及年龄和性别与健康对照组相匹配的MDD患者。我们探讨了睡眠结构的变化,包括睡眠阶段和周期、频谱功率、睡眠纺锤波、慢波(SW)和SW-纺锤波耦合。接下来,我们分析了这些睡眠特征与抑郁症严重程度和程序性记忆的夜间巩固的关系。总的来说,与对照组相比,患者的non-REM睡眠结构没有发现重大的系统性改变。对于non-REM睡眠的微观结构,我们观察到与对照组相比,未用药患者的纺锤波振幅较高,并且在开始使用抗抑郁药物后,SW较长,振幅较低,SW-纺锤波耦合更分散。此外,长期(而非短期)的药物治疗似乎会降低纺锤波的密度。用药患者夜间程序性记忆巩固受损,这与较低的睡眠纺锤波密度有关。我们的结果表明,MDD的non-REM睡眠 EEG的改变可能比以前报道的更精细。我们在抗抑郁药物摄入和年龄的背景下讨论这些发现。

    05

    Neuron:背侧流中θ振荡的选择性夹带可提高听觉工作记忆表现

    已经证实背侧流(Dorsal Stream)在工作记忆中操作听觉信息的作用。然而,该网络中的振荡动力学及其与行为的因果关系仍未明确。通过同步使用MEG/EEG,我们发现在需要比较两种不同时间顺序模式差异的任务中,背侧流中θ振荡可以预测被试的操作能力。我们利用θ节律性TMS与EEG结合的方法,在两种刺激之间的静息态间隔内,对MEG识别目标(左侧顶内沟)进行脑振荡与行为之间的因果关系研究。节律性TMS引发了θ振荡并提高了被试的准确性。TMS诱发的振荡夹带随着行为增强而增加,而且这两种增强都随着被试的基线水平而产生变化。这些结果在旋律对比控制任务(melody-comparison control task)中没有观察到,在非节律性TMS中也没有观察到。这些数据表明,背侧流中的θ活动与记忆操作有因果关系。本文发表在Neuron杂志。

    02

    详解Uber自动驾驶汽车传感器系统,什么样的配置才能避免撞人事件! | 镁客网深度

    未來的自动驾驶汽车传感器硬件系统,一定会是各传感器相互融合的。 当地时间19日凌晨,Uber一辆自动驾驶汽车在亚利桑那州撞死了一名横穿马路的妇女。因是第一起自动驾驶汽车在公共道路上发生的致人身死事故,Uber一时间被推上了风口浪尖。 然而,仅几个小时之后,负责调查此次事故的利桑那州坦佩警察局局长却表示,根据事故的初步调查显示,在此次交通事故中,Uber可能不存在过错。 剧情的反转,让人有些摸不着头脑。 从事故现场视频和Uber事故汽车的配置看 雷达和摄像头“失职”或是原罪 为了还原事故真相,利桑那州坦佩警察

    04

    用于 BCI 信号分类的深度特征的 Stockwell 变换和半监督特征选择

    在过去的几年里,运动图像 (MI) 脑电图 (EEG) 信号的处理已被吸引到开发脑机接口 (BCI) 应用程序中,因为这些信号的特征提取和分类由于其固有的复杂性和倾向于人为它们的属性。BCI 系统可以提供大脑和外围设备之间的直接交互路径/通道,因此基于 MI EEG 的 BCI 系统对于控制患有运动障碍的患者的外部设备似乎至关重要。目前的研究提出了一种基于三阶段特征提取和机器学习算法的半监督模型,用于 MI EEG 信号分类,以通过更少的深度特征来提高分类精度,以区分左右手 MI 任务。在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、k近邻、决策树、随机森林,以及它们的融合比较。SDA 和提到的分类器的超参数通过贝叶斯优化进行优化,以最大限度地提高准确性。所提出的模型使用 BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b 进行验证。所提出方法的性能指标表明其对 MI EEG 信号进行分类的效率。

    02
    领券